
 AD_________________

Award Number: W81XWH-05-2-0012

TITLE: Trauma Pod/Operating Room of the Future

PRINCIPAL INVESTIGATOR: Delbert Tesar, Ph.D.
 Chetan Kapoor, Ph.D.
 Chalongarh Pholsiri
 Edwin Jung
 Greg Giem
 Jonathan Knoll

CONTRACTING ORGANIZATION: The University of Texas at Austin
 Austin, TX 78758

REPORT DATE: February 2006

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;
 distribution unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
01-02-2006

2. REPORT TYPE
Annual

3. DATES COVERED
15 Jan 2005 – 14 Jan 2006

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

Trauma Pod/Operating Room of the Future 5b. GRANT NUMBER
W81XWH-05-2-0012

 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) Delbert Tesar, Ph.D
. Chetan Kapoor, Ph.D.

5d. PROJECT NUMBER

 Chalongarh Pholsiri
 Edwin Jung, Greg Giem, Jonathan Knoll

5e. TASK NUMBER

 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

 The University of Texas at Austin
 Austin, TX 78758

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012
 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES
 Original contains colored plates: ALL DTIC reproductions will be in black and white.

14. ABSTRACT
The University of Texas (UTA) has played a central role in the trauma pod project and has been responsible for: 1. systems engineering and design from a
robotics perspective, 2. high fidelity 3D simulator, 3. motion planning software for the scrub nurse systems, and 4. the supervisory control system (SCS). In
systems engineering and design, UTA specified a hierarchical control architecture for the trauma pod and also recommended a communications architecture
that allowed peer-to-peer communications. Detailed task analysis for tool change, supply dispense and calibration was performed. This led to the
identification of timing bottlenecks and modifications to trauma pod design. Another result of the task analysis was the identification of subsystem functional
interfaces. Detailed layout and timing analysis was also performed in Q3 and Q4. This led to the specification of all subsystem position and orientation along
with other coordinates related to robot motion. A high fidelity 3D simulator was delivered by Q2. This simulator supports integrated collision detection, multiple
camera views, and software interfaces for other subsystems to send sensor data to it. First version of the motion planning software was done in Q1. This
supported kinematic control functionality along with limit avoidance capability. Since then, obstacle avoidance and collision detection capability has been
added and this software is currently controlling robot hardware. The supervisory control system is central to the operation of the trauma pod. It accepts
commands from the user interface system. These commands are translated into subsystem specific commands by the SCS using a task execution engine that
is built into the SCS. Till Q4, two versions of the SCS have been released. These included scripted task execution capability. Over the next year, pod level
collision detection, automated task execution, alarm handling and cancellation, and calibration functionality will be added.

NOT PROVIDED

16. SECURITY CLASSIFICATION OF:

 18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

UU

 113

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Table of Contents

COVER…………...……………………………………………………………………………………………………1
SF298…………………….……………………..………………………………………………………………………2

INTRODUCTION ...4

BODY..4
SYSTEMS ENGINEERING AND DESIGN ...4
3D SIMULATOR ..8
ROBOT MOTION PLANNING SOFTWARE..14
COLLISION DETECTION SOFTWARE ..16
SUPERVISORY CONTROL SYSTEM...19

KEY RESEARCH ACCOMPLISHMENTS ...28

REPORTABLE OUTCOMES..28
AWARDS...28
DEGREES ..29

CONCLUSION ..29

REFERENCES ..31

APPENDICES..32
APPENDIX A: INTERACTION DIAGRAMS ...
APPENDIX B: LAYOUT AND TIMING ANALYSIS...
APPENDIX C: FAST CACHE KINEMATICS ..
APPENDIX D: TRAUMA POD.XML..
APPENDIX E: OSCAR SPECIFICATIONS FOR TRAUMA POD...
APPENDIX F: TASK PLANNING TECHNIQUES FOR TRAUMA POD ..
APPENDIX G: REAL TIME ROBOT CAPABILITY ANALYSIS ..

 4

INTRODUCTION
The University of Texas (UTA) has played a central role in the trauma pod project. Specifically,
it has been responsible for:

5. systems engineering and design from a robotics perspective,
6. high fidelity 3D simulator,
7. motion planning software for the scrub nurse systems, and
8. the supervisory controller.

This report describes the technical developments, including current status, limitations, and issues
in each of the areas listed above.

BODY
UTA’s work has been in four areas as outlined in the previous section. Accomplishments in each
of these areas are discussed below:

Systems Engineering and Design
UTA has played a critical role in this area, providing design and engineering expertise leading to
the development of the control architecture of the trauma pod, the detailed task analysis and
functional interfaces for trauma pod subsystems, and the layout and timing analysis for all
subsystems in the pod. These are further discussed below:

Control Architecture
This defines the command and control hierarchies between the various subsystems. The primary
purpose of this architecture is to simplify the overall control system design by separation of
concerns. This partitioning can be achieved based on functionality and timing requirements. For
example, the low level servo control of a manipulator is generally the lowermost part of a
manipulator control system versus the task planning system that runs at a slower rate and is at
the highest level.

The two major options available for the control architecture were: hierarchical control system
and a reactive, agent based control system. The former is better suited for well structured
environments where there is a clear hierarchy of tasks to be performed and master-slave
relationships are obvious. A reactive control system is better suited for highly autonomous
systems that are sensor driven and where most subsystems have a peer-to-peer relationship.
Based on the structured design of the trauma pod and little autonomy of the robotic systems,
UTA proposed a hierarchical control architecture. In this architecture, the top most layer is the
surgeon interface. Below that is the Supervisory Control System (SCS) and below the SCS are
the other subsystems.

One limitation of the hierarchical control system is that it restricts peer-to-peer communication.
As such, all communications have to be through by the SCS, thereby limiting efficiency. To
work around this problem, the communication architecture that was proposed allowed for peer-
to-peer communications. As such, if the Scrub Nurse System (SNS) wanted to communicate with
the Tool Rack System (TRS), it could do so. This does break the hierarchy of the system, but

 5

allowed efficiencies to be added. Overall, the system is hierarchical with some peer-to-peer
communication where necessary. This architecture is shown in Figure 1.

- Hierarchical Control System - XML Schema Based Interfaces - Subsystem Command Interface
- Hierarchical Error Handling - Publish-Subscribe Communication - Subsystem Sensor Interface

AMS
- Pod Mgmt

SCS
-Pod Task Control
-Collision Checking

Sensor Data
- Subsystem World Model
Sensor Data
- Subsystem World Model

SDS
-Dispense & Track
-Waste Mgmt

SDS
-Dispense & Track
-Waste Mgmt

SDS
-Dispense & Track
-Waste Mgmt

SRS
-Surgeon Controlled
-Automated Un/Park

SNS
-Pick & Place
-Obstacle Avoidance

TRS
- Tool Dispense

Command Data
- XML Commands
- Subsystem States

Patient Scan Data

Mgmt. Data
- XML Commands

Pod Simulator
-Real Time Motion & Collision
-Multiple (Stereo) Camera Views

UIS
-Surgeon commands
-System status

RMS
-Tool/Supply Tracking
-Patient record

RMS
-Tool/Supply Tracking
-Patient record

MVS
-Supply/Tool Verify
-Pod Calibration

Status Data

Figure 1: Trauma Pod Control, Communications and Software Architecture.

Task Analysis and Function Interfaces

This task involved studying the interactions between all subsystems that are required to meet the
two primary tasks of the trauma pod. These are “tool request by the surgeon” and a “supply
request by the surgeon”. Besides these two surgeon level tasks, the setup task of trauma pod
calibration also was analyzed.

The analysis of these tasks started with the critical requirement that the surgeon’s request for tool
or supply be met within 10 seconds. When the task analysis showed that it would be near
impossible to meet the 10 second request, it was decided to make physical design changes to the
trauma pod to meet the 10 second requirements. These changes included 2 grippers on the SNS
and the addition of a Fast Cache (FC) to the Supply Dispensing System (SDS). These changes
led to reanalyzing of the tasks and the development of new interaction diagrams. This was all
done in Q2 and Q3 of this project. In Q4, specific emphasis was placed on the User Interface
Subsystem (UIS) and as its details were worked out, the task analysis had to be redone to take
into account complex interactions between the UIS and the Surgical Robot System (SRS).

In addition to the task analysis, this process also identified the syntax and semantics of the
function interface for each subsystem. For example, to command the SNS to move to a certain
Cartesian position, the command was identified to be MoveToEEPose(….). This type of function

 6

interface specification was done for the SNS, SDS, TRS, FC, etc. Results of the interaction
diagram are shown in Appendix A.

Layout and Timing Analysis

This task involved coming up with a logical layout of the trauma pod and then performing a
detailed kinematic analysis to identify Cartesian positions and orientations for each subsystem.
This included the joint position configurations for the SRS, FC, and the SNS. This analysis had
to be performed keeping in mind the speed of operations for the FC and the SNS, the clearance
between each subsystem, the potential for collisions, and the ability of the SNS to meaningfully
interact with relevant subsystems.

Figure 2: Trauma Pod Logical Layout.

 7

This analysis was started in Q1 and reached its completion in Q4. Q1 basically identified the
logical layout (shown in Figure 2). Detailed kinematic analysis was started in Q3 and it was
iterated over as there were design changes made to the subsystems. Finally, all open issues were
addressed by end of Q4. In addition to this analysis, it was noted that the kinematics of the FC
were not clearly defined. UTA took the lead in this and further developed this in Q3 and Q4.

Summary of the timing analysis is given in Figure 3. Detailed results of the layout and timing
analysis are given Appendix B. Details of FC kinematics are given in Appendix C.

1.0SNS-FCSNS-SDS-TZ
1.6SNS-SDS-WSNS-SUPP-W
0.7SNS-STZ-RSNS-SUPP-W
1.1SNS-SUPP-WSNS-SDS-SC
1.4SNS-SUPP-WSNS-SDS-TZ
1.2SNS-TRSSNS-TAS-L
0.8Right gripperLeft gripper
0.6SNS-TAS-LSNS-TOOL-W
0.8SNS-TOOL-WSNS-TRS

Approx. Move time (s)DestinationOrigin

1.0SNS-FCSNS-SDS-TZ
1.6SNS-SDS-WSNS-SUPP-W
0.7SNS-STZ-RSNS-SUPP-W
1.1SNS-SUPP-WSNS-SDS-SC
1.4SNS-SUPP-WSNS-SDS-TZ
1.2SNS-TRSSNS-TAS-L
0.8Right gripperLeft gripper
0.6SNS-TAS-LSNS-TOOL-W
0.8SNS-TOOL-WSNS-TRS

Approx. Move time (s)DestinationOrigin

Note:
1. Move times include move from approach to grab points (A-G) and/or G-

A, where applicable. In these examples, move time for each of A-G and
G-A is 0.2 second. Gripper opening/closing, force times not included.

2. Some trajectories involve move via which has not been optimized yet.
3. Obstacle free paths were used.

Figure 3: SNS Move Times.

World Model
The purpose of the world model is to provide a geometric description of all the physical
subsystems in the trauma pod and also provide configuration data for all relevant points in the
trauma pod. This information is critical to the functioning of the trauma pod and is used by the
following:

1) Calibration software.
2) SNS control software.
3) Collision detection software.
4) Path planning software.
5) Supervisory control system.
6) Fast cache control software.
7) SRS control software.
8) User interface software.
9) Simulator software.

The world model data is generated from multiple sources. First is the CAD model of the trauma
pod. This provides geometric data associated with each subsystem. This geometric data is used
to build the collision detection model, the obstacle avoidance model for the SNS, and the 3D

 8

display for the simulator. The second source of world model data is the Layout and Timing
Analysis that was discussed in the previous section. This analysis leads to the generation of
Cartesian coordinates for each subsystem location and also for all the relevant points in space at
which subsystems interact with each other. The third source of world model data is the
specifications for each of the robot system in the trauma pod. Specifically, robot kinematic data
(called DH parameters), their position, velocity, and acceleration travel limits, their joint
positions at home configuration, etc. are all captured in the world model.
For the trauma pod, the functionality provided in the UTA developed OSCAR software was used
to create the world model. OSCAR basically provides a means of describing a generic robotic
workcell, of which the trauma pod is an instance. The basic structure in OSCAR to do this is
hierarchical and is shown below:

Workcell (1)
 Manipulator (0 through n)
 DH Parameters
 BasePose
 Position, Velocity, Acceleration, Torque, Current Limits
 Configurations of Interest
 Frames of Interest
 Obstacle Model
 Tool (0 through n)
 Tool Tip Pose
 Obstacle Model
 Environment Obstacle Model (1)
 Frames of Interest (0 through n)

There are detailed specifications under each of the headings shown above. For example,
Obstacle Model has significant detail under it that allows the specification of geometric shapes
and polytopes.

The world model is implemented using XML with a well defined schema that is used for
validation. OSCAR provides C++ classes that allow the parsing and editing of the world model.
The specific instance of the world model for the trauma pod is given in Appendix D.

3D Simulator
 The trauma pod simulator serves three purposes. First, it provides a virtual environment for
design and software testing, prior to the availability of the hardware. Second, it provides an
alternative display with views from various vantage points of the trauma pod, and third, it is an
excellent tool for training the surgeon on using the trauma pod. The purposes outlined above led
to the development of the simulator that is described below:

Requirements: The simulator must provide a geometrically and kinematically correct animation
of the pod and all subsystems. It must support an interface through which the individual
subsystems can communicate to completely graphically describe any motions within the scene.
It should provide a stereo output so the surgeon can practice working with the pod before the

 9

hardware design is complete. Since the design of all the hardware is done in CAD, the
simulation environment must also be able to import CAD models.

To meet the above requirements, we evaluated various commercial and research simulation
environments. This analysis is summarized in Table 1. OpenSceneGraph software was selected
for developing the trauma pod simulator. Its main advantages are that it’s a package of C++
libraries and as such is much more flexible than any of the other possibilities. It is also
significantly faster than the alternatives. Its biggest downside is the fact that it requires higher
programming effort than the other packages

Evaluation
 Criteria

Software
Graphics

Update Rate

Applications
Programming

Interface Stereo

Development

Cost-Time
Purchase

Cost
Solidworks unacceptable Visual Basic Supported High High

Roboworks adequate Network Interface
Not

Supported
Minimal

Low
OpenSceneGraph good C++ Libraries Supported Medium Free

Webots unacceptable C++
Not

Supported
Medium

Low
Table 1: Analysis of Simulator Choices.

Design: The basic OpenSceneGraph framework is hierarchical – a tree structure with one root
node with any number of children, each of which also has children, etc. The simulator makes
use of this framework by adding Robot and Camera nodes used within the scene. The robot
models are all generated automatically from the world model data file using the included robot
DH-Parameters and STL file paths. The locations for all cameras are also included within the
world model and can be switched using the user interface. All geometry in the environment is
defined in the world model file and loaded automatically by the simulator. The frames of
interest and obstacle models are also included within the world model file and loaded
automatically, and each can be toggled using the user interface.

The simulator has 3 parallel software threads running at all times, and a fourth if collision
detection is being used. The dispatcher thread receives XML messages on the ModelUpdateIf’s
and converts them into a current snapshot of the subsystem that sent the message. This data is
posted to a shared data object that is constantly being accessed by the 3D graphics update thread,
and the collision detection thread if active. There is also the main thread which starts each of the
other threads and provides a user interface for manipulating the view and changing the simulator
options. This setup is shown in Figure 4.

 10

Figure 4: Simulator High Level Software Design.

Implementation: The simulator was written entirely in C++ using libraries from
OpenSceneGraph (openscenegraph.org) and OSCAR (www.robotics.utexas.edu).
OpenSceneGraph was used for the graphics while OSCAR was used for reading and parsing the
world model data file and to provide basic math computation functionality. The collision
detection code was included in the simulator project to make integrated collision detection an
available runtime option. The entire project was about 10,000 lines of code, not including the
test application. The test application used OSCAR code to plan some simple motions, and then
send appropriate XML messages using spread communications infrastructure.

Performance: The simulator updates at a rate that varies depending on the density of triangles in
the current view. In high density areas, it updates at 20Hz; and at low density areas it updates at
about 60Hz. This is unaffected by the usage of the collision detection thread on the computer
used for the tests, a dual xeon machine with 2gb ram and an NVIDIA quatro video card. Some
screenshots of the simulator are shown in Figure 5 through Figure 11.

Status: Initially, two versions of simulators were developed. These were a RoboWorks based
simulator and then the OSG based simulator that is described in this section. The RoboWorks
based simulator was ready in Q1 and OSG based simulator was delivered in Q2. Since then,
regular updates to the OSG simulator have been provided. These include changes to the
simulator every time there is a CAD model change and discovery and fixing of software bugs.

Dispatcher

3D Update Thread Collision Detection
Thread

Model Data

Collision Data

XML Messages

Main Thread

 11

Figure 5: Frames of Interest with Labels.

Figure 6: Obstacle Model Envelopes.

 12

Figure 7: Default Scene Position.

Figure 8: Split-Screen Stereo View of Surgical Zone.

 13

Figure 9: View from SDS Camera.

Figure 10: View from TRS Camera.

 14

Figure 11: View of Tray from SNS Camera.

Robot Motion Planning Software
Motion Planner (MP) is a major component of the robot control software for trauma pod. It is
used to plan and generate collision-free motion of the SNS robot. The current selection of the
SNS robot is the 7-DOF Mitsubishi PA-10 manipulator.

Requirements: The SNS robot is responsible for delivering tools and supplies to the SRS. This
must be done in a timely, safe, and accurate fashion.

1. MP must generate trajectories in such a way that allows SNS to complete the tool change
task within 10 seconds.

2. MP must generate trajectories in such a way that allows SNS to complete the supply
dispense task within 10 seconds.

3. The joint trajectories generated by MP must be within the SNS robot’s physical (position,
velocity, and acceleration) limits.

4. The trajectories generated by MP must be free of collision with any other subsystem or
itself.

Design: The main task of MP is to provide coordinated control and to generate collision-free
trajectories and send trajectory set-points to the robot controller at a sufficient rate (100 Hz). MP
also has the ability to determine the minimum or near-minimum time to move the robot to a
desired location from the current location, based on the robot’s physical (position, velocity, and
acceleration) limits. The MP module consists of several components working together to help
meet the above requirements.

 15

1. Trajectory Generation (TG): TG can generate trajectories in both joint and Cartesian
spaces. Not only can TG generate trajectories between two end points but also
trajectories that pass through intermediate points. In addition, TG takes into account the
robot’s velocity and acceleration limits to ensure that the generated trajectories are
executable by the robot.

2. Kinematics consisting of Forward Kinematics (FK) and Inverse Kinematics (IK): After
trajectories have been generated, IK is used to compute the next joint command to be sent
to the robot controller. The computation rate of obstacle avoidance and collision
detection must be greater than the rate required by the robot controller (100 Hz). There
are two types of IK employed in MP, namely a closed-form IK and an iterative IK
solution. FK is called upon whenever a need to compute the end-effector’s location
arises. FK is also used in the iterative IK.

3. Obstacle Avoidance (OA): OA uses distances computed from a geometrically simplified
model of trauma pod to help guide the robot motion to avoid any obstacle or collision
during run time. The simplified model consists of primitives whose distance to other
primitives are simple to compute. These primitives are cylispheres (cylinders with two
hemispheres at both ends), spheres, boxes, and planes.

4. Collision Detection (CD): CD is used as a safeguard ensuring that trajectories generated
by MP will not cause any collision. Unlike OA, CD is based on a precise CAD model of
trauma pod. Also unlike OA, CD does not guide the robot away from any obstacle or
collision. It can only prevent collision. Before being sent to the robot controller, all the
joint commands computed with TG, IK, and OA will be checked for collision. If a
collision is detected, MP will issue an error and cancel the trajectory. Further details of
CD are given in the next section.

5. Model Data Update: This is a component that is used to provide real-time sensory data to
OA and CD. It receives the data (mostly locations) from all the subsystems, stores them,
and lets OA and CD retrieve them in a timely and thread-safe manner.

The basic analytics on which the MP software is based on are described in Appendix G. Figure
12 shows a block diagram of these components pieced together.

Figure 12: Block diagram of Motion Planner.

Model Data

TG

OA CD

Collision-
free

Subsystems

IK

MP

Robot
Controller

Abort

Yes

No

 16

Implementation: The MP module is implemented in C++ using various OSCAR libraries,
especially Forward Kinematics, Inverse Kinematics, and Obstacle Avoidance. Prior to the
development of the MP software, UTA provided detailed OSCAR specifications as they related
to the trauma pod and SNS in particular. These are given in Appendix E.

Excluding Collision Detection, the code written specifically for trauma pod contains
approximately 20 C++ classes and roughly 10,000 lines of code. In this implementation, OA
runs in its own thread at the user-specified rate (usually 50 or 100 Hz).

MP is deployed on the SNS controller as a non-real-time process in a Real-Time Linux
(RTLinux) computer. Because of this, MP occasionally misses sending the joint command to the
robot controller at the specified rate (100 Hz). A workaround was to make MP send a buffer of
joint commands (typically 10 commands) so that if it is late sending the command at the next
cycle, the robot controller can use the next command in the queue. This means that during each
cycle, MP must compute up to 10 joint commands.

Performance: Studies showed that the move times for all trajectories generated by MP are under
2 seconds and most are about 1 second. Therefore, the requirements of 10 seconds for tool
change and supply delivery tasks should be achievable. Another performance of interest of MP is
the sufficient computational rate. The MP speed was tested on a computer with Pentium 4, 1.8
GHz and 512 MB of RAM running SuSE Linux 10 operating system. In this test, we assume
that MP had to generate 5 new joint commands on average in each cycle. The test results
summary is given below:

1. Without OA and CD, MP runs at around 1460 Hz.
2. With CD and OA (running at 100 Hz), the computational rate is approximately 170 Hz.
3. If we run OA at a slower rate of 50 Hz, then the cycle rate goes up to 224 Hz.

The conclusion here is that on average, MP with OA and CD is fast enough to meet the
requirement of 100 Hz cycle rate.

Status: The first version of the MP software was ready at month 4. However, due to integration
issues, the first version of MP was successfully integrated and demonstrated on the SNS
hardware at month 8. Since then, the MP has been regularly updated, including the addition of
CD, OA and buffering capability. Future developments in the MP are related to performance
improvement of MoveVia commands and any other issues or problems that may arise.

Collision Detection Software
The main purpose of Collision Detection (CD) software, as implemented in the trauma pod, is to
support a collision free and thus safe (for man and machine) surgery environment. Collision
detection is vital to three main trauma pod areas: simulation/design, path planning, and real-time
motion planning.

A simulation environment equipped with collision detection capabilities was a valuable tool for
the design of multiple collaborative subsystems. Using such a simulation environment during
the design phase of the trauma pod aided in layout analysis and manipulator design. As layout of
the trauma pod was analyzed, collision detection helped resolve subsystem positioning conflicts

 17

and also helped determine optimal placements of manipulators to reduce obstructions with other
subsystems. Manipulator design was also influenced by collision detection such as when an end-
effector design feature resulted in limited collision-free movement of the end-effector.

Collision-free path planning is also dependent on collision detection. In the case of the trauma
pod, paths can be checked to be free from collision before or during execution. If collisions exist
then obstacle avoidance techniques can be applied until the optimal path is found. Collision
detection does not supply any information on how to avoid obstacles but is does provide position
data to algorithms within the obstacle avoidance domain that do.

The SCS uses collision detection to ensure that all systems are operating safely during real-time
execution. If proximity queries between two objects show that they are closer than an acceptable
margin the SCS can then take appropriate action.

Analysis of CD Software Libraries: In choosing the method of collision detection to be used
for the trauma pod, the following requirements must be considered:

• Support of complex geometric CAD data
• Acceptable computational performance
• Low-Level control of collision pairs

The geometric data is expressed in the form of stereolithography (STL) data files which are
complex triangle meshes derived from CAD data. Acceptable performance for the trauma pod
was defined as a rate of 100 Hz or higher. Low-level control of collision pairs means that the
user must be able to control which collision pairs are calculated at a given time.

All methods of collision detection consist of calculating distances between every object in a
given space. These distances are computed either analytically or by iterative algorithms.
Analytical calculations exist for distances between simple primitives such as spheres, cylinders,
and planes. However, for complex geometry, only iterative algorithms provide the best results in
terms of the first two requirements, geometric complexity and speed.

Software Library for Interference Detection (SOLID) was chosen to perform distance
computations in the trauma pod. Developed by G. van den Bergen, it uses a popular iterative
algorithm, the Gilbert Johnson Keerthi algorithm (GJK). It was chosen because it fulfilled the
above requirements, was well documented, and was thoroughly tested.

SOLID maintains high performance rates by computing distances between successively higher
resolution objects. Distances between object bounding boxes are first computed and if any two
bounding boxes intersect then distances are computed between relevant portions of triangle
meshes. Position data is cached between each collision query so that time is not wasted by
computing distances between non-moving objects or objects moving in opposite directions.

Implementation: The collision detection software for the trauma pod was written in C++. All
trauma pod data is represented by one world model data file. The collision detection software
reads this file and sets the position and geometric data accordingly. The collision detection
software and all other software modules of the trauma pod use the same world model data file to
prevent discrepancies. The collision detection software uses the SOLID library for distance

 18

calculations and for robot kinematics it uses the OSCAR software developed by UTA. These
two libraries along with approximately 6,000 lines of code provide the following interface
functionality:

• Check collisions in trauma pod
• Get data from collision occurrence
• Update position of any moveable subsystem.
• Ignore collisions between any two objects
• Get distance between any two objects
• Set the bounding margin of any object

Task Example: As an example of this functionality, these are the steps that could be followed
while the SNS performs the simple task of moving to the tool rack and picking up a tool.

1. As the SNS moves toward the tool rack, repeatedly update its position in the collision
detection software and check for collisions.

2. As the SNS moves through space, check the distance between it and other objects of
interest for use by the path planning software.

3. On approach to the tool of choice, turn off the end-effector and tool collision pair.
4. Pull the tool off the rack (still updating position repeatedly) and set the bounding

margin of the tool to 2 cm. This will cause the rest of the trauma pod to see the tool
as being 2 cm larger in all directions.

In addition to the above implementation, another configuration of the software was created
which is only concerned with collisions which involve the SNS. This further improves
performance of the collision detection software because distances between other subsystems are
not computed.

Performance: The trauma pod geometric data is represented by about 700,000 triangles. Using
that data, Table 2 shows the performance of the collision detection software at different
instances. The software configurations refer to when collisions are being detected between
everything in the trauma pod (Full) or when collisions are detected in which the SNS is involved
(SNS). For each of these configurations the rate is computed when there are 0 and 1 collisions.

Software Config. # of Collisions Rate (Hz.)
Full 0 320
Full 1 115
SNS 0 6200
SNS 1 300

Table 2: Performance Data for Collision Checker.

As expected, the SNS configuration is much faster than the Full configuration. Also, when one
collision occurs the performance deteriorates because deeper collision queries must be computed
to compute intersecting triangle meshes.

Status: The first prototype of the CD software was available in Q1. It was successfully
integrated with the simulator in Q2 and was integrated with the MP software in Q3. The CD

 19

software will be integrated with the SCS in Q5. For now, no additional functionality is planned
for the CD software. Primary focus will be on resolving any issues/problems that may come up.

Supervisory Control System
The primary responsibility of the supervisory control system is the command and coordination of
other subsystems within Trauma Pod to complete requested tasks requested by the User Interface
Subsystem (UIS). Additionally, the SCS is responsible for monitoring subsystems to detect
collisions and basic subsystem failures.

The SCS, in combination with the AMS subsystem, is also used to execute various tasks for
calibration, setup and initialization, and shutdown of the Pod subsystems.

Requirements: Detailed subsystem requirements are available in Functional Subsystem
Requirements (CTL-001-R01-System_Requirements.xls) document available from
www.traumapod.org. The major functional requirements from this document are summarized in
Table 3.

Reqmt # Requirement
SCS FUN 1.0 The SCS shall initiate, monitor, and terminate all subsystem primary tasks.
SCS FUN 1.1 The SCS shall provide the mechanism through which Trauma Pod tasks between

interacting subsystems are planned and scheduled.
SCS FUN 1.2 The SCS shall provide the mechanism through which Trauma Pod tasks are

executed.

SCS FUN 1.3 The SCS shall be responsible for coordinating the actions of each subsystem and
ensuring the safety of the Trauma Pod system as a whole.

SCS FUN 1.4 The SCS shall be responsible for ensuring that Trauma Pod robotic elements do not
collide. If any subsystems are about to collide, the SCS shall immediately stop the
motion of the relevant subsystems to prevent collision.

SCS FUN 2.0 The SCS shall keep a repository of system tasks. Tasks shall be created and edited
by an application on the SCS. Task definitions shall be decomposed into subsystem
tasks.

SCS FUN 3.0 The SCS shall insure that subsystem primary tasks are executed with the necessary
timing and order to complete system-level tasks (e.g. change SRS tool).

SCS FUN 4.0 The SCS shall detect error conditions related to surgical tasks, either by monitoring
or by being alerted, and take corrective action.

SCS FUN 5.0 The SCS shall accommodate interruptions, such as the surgeon canceling a task in
the middle of execution. The SCS shall provide recovery commands to return the
system to an appropriate state to continue activities.

SCS FUN 6.0 The SCS shall provide software interlocks to prevent incompatible actions from
being executed. A defined recovery procedure shall be provided to return the
system to a previous state after an interlock is triggered.

SCS FUN 7.0 The SCS shall store the geometry definitions for all physical elements of the system
including: subsystem outlines/footprints, robots, and patient registration. The SCS
shall provide a data file server accessible by subsystems (e.g. via HTTP).

SCS FUN 11 The SCS shall recognize and respond to an Emergency Stop signal.
Table 3: SCS Functional Requirements.

 20

Design: The design of the SCS involves system engineering efforts as well as subsystem design
for the SCS. The design is described in the following sections on Task Analysis, Interfaces and
Communications, and Task Execution.

Task Analysis
Because the SCS is central to executing surgeon level tasks and coordinating other subsystems,
early efforts in Q1 through Q3 were spent on task analysis, interface design, and systems
engineering. During Q4 these interactions were finalized and subsystem interfaces were frozen.

During Q1-Q2, logical points of relevance (see Figure 2. Trauma Pod Logical Layout) were first
identified and named. These points defined locations to which the SNS robot would need to
move. The sequence of SNS movements and subsystem commands which would then be
required to complete a surgical task such as changing a tool were then identified and documented
in interaction diagrams. Figure 13 is a representative diagram. Appendix A contains high level
diagrams for Tool Change, Supply Dispense, and Calibration.

 21

sd GetNewTool

par GetNewTool

:SCS

(from Objects)

:SNS

(from Objects)

:TRS

(from Objects)

EE1 :EndEffector

(from Objects)

EE2 :EndEffector

(from Objects)

ref
TRS Tool Remov e (PickAndPlace)

ToolChange : TRS
Tool Remove
(PickAndPlace)

GenericRsp:= SNSMoveToEEPoseCmd(moveTime, targetPose =
SNS-TRS-A, targetName = SNS-TRS-A, trajectoryType = Automatic)

SNSSetGripperStateCmd(gripper = EE1,
100)

"Open to xyz mm"

"Done"
GenericRsp

SNSSetGripperStateCmd(EE2,
100)

"Open to xyz mm"

"Done"

GenericRsp

TRSSelectToolRsp(EPCcode):=
TRSSelectToolCmd(00007)

Name:
Package:
Version:
Author:

GetNewTool
ToolChange
1.0
Ed Jung

Figure 13: “Get New Tool” Interaction Diagram.

Interfaces and Communications
During Q2-Q4, based on the interaction diagrams messages that each subsystem needed to
accept were defined. These messages are grouped according to interface types, such as SCSIf,
SNSIf, TRSIf, etc.

XML strings were chosen as the format for the messages, which provides platform independence
and a human readable format. XML schemas for each interface type formally define the
messages which are accepted on an interface. These schemas may then be used to generate code
that automatically transforms an XML string into a language specific format, such as C++ or
Java.

 22

For example, the TRSIf defines the following message interface for the TRS:
1. TRSSelectToolCmd
2. TRSSelectToolRsp
3. TRSSelectEmptySlotCmd
4. TRSSelectCalibrationLugCmd
5. TRSAcquireToolCmd

6. TRSAcquireToolRsp
7. TRSSurrenderToolCmd
8. TRSSurrenderToolRsp
9. TRSGotoBayCmd
10. TRSSetGripperStateCmd

These messages are formally specified in the TRSIf.xsd schema. For example, the
TRSSelectToolCmd is specified as:

<xs:element name="TRSSelectToolCmd">
 <xs:annotation>
 <xs:documentation>
 Receiver must lookup "type" in the local inventory to
 find a bay containing the requested tool. If a tool is available,
 the tool magazine is rotated to present the tool at the TRSTransferZone.
 If the requested tool is not available, a Nak message is sent back.
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="MessageType">
 <xs:sequence>
 <xs:element name="type" type="ProductType"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
</xs:element>

and a specific instance of this message string is:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<TRSSelectToolCmd>
 <src>SCS</src>
 <dst>TRS</dst>
 <ts>1138909101965</ts>
 <xid>89</xid>
 <type>00006</type>
</TRSSelectToolCmd>

Several other interfaces such as NodeIf, AlarmMonitorIf, AlarmMonitorIf, and others are also
defined and supported by subsystems. These are intended for use by the AMS. Additionally,
ModelIf (e.g., SNSModelIf, TRSModelIf) interfaces are defined for use by the simulator and
collision checking software. These interfaces may be used by the SCS, but are not fundamental
to its task execution capability.

The XML messages defined by the schema are sent to subsystems over Ethernet using the
Spread Group Communication software (www.spread.org). Spread is a freely available publish-
subscribe software package.

 23

Task Execution
The primary functional responsibilities of the SCS include the planning and scheduling of tasks
as defined by the interaction diagrams, and ensuring the safety of Trauma Pod subsystems.

Each of the commands in the interaction diagrams previously may be described in terms of their
pre-conditions and post-conditions. Pre-conditions are conditions which must be true before a
command can execute, and post-conditions are conditions which must be true after a command
executes. Conditions can be compared against extended state variables for each subsystem to
ensure they are met, where extended state variables describe the status of a subsystem.

 For example, in Table 4 below, the tool held by the SRS is an extended state variable, the pre-
condition for the Surgical Robot Subsystem (SRS) is that its end-effector is empty, and the post-
condition for the SRS is that its end-effector has scissors.

Task: Insert scissors in surgical robot’s end-effector
Initial State: Surgical robot’s end-effector is empty AND Nurse has scissors
Goal State: Surgeon robot’s end-effector has scissors AND Nurse does not have scissors

Table 4: Example of Pre-conditions, Post-conditions, and Extended State Variables.

Pre and post conditions for tasks may be checked by the SCS to ensure the safety of pod
subsystems. Before executing a command, the SCS should check pre-conditions to ensure that
they are met, and after executing a command, the SCS should compare the expected post-
conditions against the actual state of the Trauma Pod to ensure that the command has completed
successfully.

These conditions may additionally be used to plan and schedule surgeon tasks. By comparing
pre and post conditions of commands, it should be possible to automatically assemble an optimal
sequence of commands to accomplish any surgeon level goal. This capability, however, is
beyond the scope of Phase I goals for the SCS. Appendix F analyzes the feasibility of automated
planning and scheduling for the SCS. Phase I implementation will use pre and post conditions,
as well as a constrained set of pre-defined tasks to handle surgeon commands.

Extended state variables for Trauma Pod Subsystems were specified in Q4 and are summarized
in Table 5 below.

 24

SRS Variables SNS Variables

SRS.SlaveLeftArm.State = [Lock, Clutch, Follow, Float] SNS.ActiveGripper = [EE1, EE2]

SRS.SlaveRightArm.State = [Lock, Clutch, Follow, Float]
SNS.Gripper.EE1.Contents = [Tool, Tray,

Empty]

SRS.MasterLeftArm.State = [Lock, Clutch, Follow, Float]
SNS.Gripper.EE2.Contents = [Tool, Tray,

Empty]
SRS.MasterRightArm.State = [Lock, Clutch, Follow,

Float] SNS.Gripper.EE1.State = [0..100]
SRS.SlaveLeftArm.ToolType = productType SNS.Gripper.EE1.Error = [true, false]
SRS.SlaveRightArm.ToolType = productType SNS.Gripper.EE2.State = [0..100]

 SNS.Gripper.EE2.Error = [true, false]
SDS Variables SNS.TAS.Left.IsLatched= [true, false]

SDS.FC.Location = [Home, Park, SNSAccess, STZ] SNS.TAS.Left.HasTool = [true, false]
SDS.FC.IsMoving = [true, false] SNS.TAS.Right.IsLatched = [true, false]
SDS.SC.slot.<int>.empty = [true, false, unknown] SNS.TAS.Right.HasTool = [true, false]
SDS.FC.slot.<int>.empty = [true, false, unknown] SNS.IsMoving = [true, false]
SDS.dispenser.slot.<int>.empty = [true, false, unknown]

 TRS Variables
 TRS.CurrentBay.Index= [0..14]
 TRS.CurrentBay.epc = epcCode
 TRS.CurrentBay.GripperState? = [0..100]

TRS.inventory.hasProductType.<ToolType> =

[true, false]
Table 5: Extended State Variables.

Calibration
Calibration involves identifying the position and orientation of all subsystems in the trauma pod
based on the actual physical layout. The data from the CAD model provides a starting point. This
data is analyzed for layout and timing issues and is captured in the world model. During
calibration, the design data captured in the world model is modified to reflect actual
configuration of the trauma pod.

Two different calibration processes will be implemented in the trauma pod. These are manual
and automatic calibration. In manual calibration, an operator will move the SNS robot to all the
calibration lugs. During this process, the actual position of the calibration lugs as seen by the
SNS will be captured. This information will be compared to the position of the lugs as defined in
the world model. The delta error between the two will then be used to modify the position and
orientation of the relevant subsystems. During automatic calibration, the SNS robot will be
commanded to move to the calibration lugs in a sequence. If there is a failure in any of these
moves, automatic calibration will be cancelled and manual calibration sequence will follow.

Currently, the calibration task and calibration software module have not been implemented.
These will be done in Q5.

 25

SCS Implementation and Status
The following sections outline the status of the SCS as currently implemented.

Communications and Interfaces
Because the SCS must communicate with numerous subsystems and halt subsystems in case of
faults, the SCS communications software should be scalable to a large number of interfaces and
handle messaging errors by other subsystems. Also, the interfaces defined by the XML schema
are expected to change numerous times throughout the project, and introduce another source of
bugs into the system. Efforts in Q1 and Q2 were directed at implementing scalable and robust
communications software.

The communications software for the SCS is composed of two major components—SCS-Spread
integration software and XML message integration software. Although the Spread software
package provides a ready-to-use software library, bridging the gap between Spread
communications, XML messages, and C++ objects usable by the SCS still requires significant
effort. These Spread integration and XML message integration software bridge this gap.

The SCS-Spread integration software consists of several classes for simplifying the sending,
receiving and dispatching Spread messages on the SCS. This software was also reused for
communications on the Simulator.

The XML message integration software consists of several C++ classes and several XSL
stylesheets to automatically generate code from the interface schemas for transforming Spread
messages into C++ objects. OpenBinder software provided by ORNL was also used.

This approach reduces the potential errors that might be introduced by manually writing the
software for transforming a raw Spread message into a C++ object usable by the SCS. Changes
in interface schemas can also be automatically reflected in the SCS software. Additionally, the
addition of new interfaces to the SCS can be easily achieved.

Basic Subsystem Functions
The SCS implements all basic behaviors and functions required of all Trauma Pod subsystems,
as defined by the NodeIf interface and the Node State Machine diagram in Figure 14. These
functions encompass activities such as setting/getting of configuration parameters, alarm

Spread
Message

XML String C++ Object

SCS-Spread
Integration
Software +
Spread API

XML
Message
Integration
Software +
OpenBinder

 26

management, bootup and initialization, and logging on the SCS subsystem. These basic
functions were delivered for Q2, with additional updates and revisions for Q3 and Q4.

Figure 14: Node State Machine.

 27

Task Execution Functions
The SCS currently supports basic task execution functionality, including the ability to execute a
task, queue tasks, cancel tasks, and query task status. Communications with each subsystem has
also been demonstrated.

The basic Tool Change task on the SCS was delivered at the end of Q3, but could not be tested
or demonstrated until Q4, due to the dependencies on the correct functioning of other subsystem
emulators in the Trauma Pod.

A framework for executing any surgeon task is currently in place, but the following task
execution functions remain to be implemented in the following quarters.

• Supply Dispense Task: The surgeon requested supply dispense task will be implemented
and debugged in Q5-Q6. Because Supply Dispense involves the coordination of several
robots, supply counting, and two-way interactions between subsystems, its
implementation is more complex than Tool Change.

• Subsystem monitoring: Implementation of the extended state variables is required for the
SCS to perform subsystem monitoring. Once these variables are implemented by
subsystems in Q5, the SCS will add the capability to monitor subsystems for faults and
status.

• Cancellation, Pause, and Recovery: Though the SCS is currently capable of queuing and
canceling tasks, it does not yet have the ability to recover from a cancelled task. During
Q4 the strategy for handling and recovering from a cancelled task was identified.

• Debug tasks: Various debugging tasks are needed to run the actual hardware subsystems.
 These include tasks such as inserting and removing fast cache/slow cache trays from the
SDS, or tools from the SRS and TRS.

Additional functionality which remains to be implemented includes:

• Collision detection: Collision detection software has already been implemented and
tested on the SNS. The SCS will share this code for its collision detection
implementation, and will be added for Q5.

• Manual mode tasks and GUI: A manual mode administrative GUI for the SCS will be
added. This GUI will allow a user to access various debug tasks and functions on the
SCS.

• Task Updates: As actual timing data and experience with Trauma Pod hardware is
gained, it is expected that surgeon level tasks will have to be revised or rewritten to
accommodate changes.

 28

KEY RESEARCH ACCOMPLISHMENTS
• Developed a generalized world modeling format that can be used as input to task

planning algorithms, 3d simulators, robot controllers, and collision detection software.

• Developed a kinematic controller that supports a variety of trajectory types along with
the ability to pass through kinematic singularities while avoiding obstacles.

• Resolved issues related to integration of collision checking with obstacle avoidance.
Basically, obstacle avoidance is a real-time function of the robot controller that requires
constant time distance computation. Due to this requirement, using hi-fidelity CAD
models for obstacle avoidance is very compute prohibitive. On the other hand, collision
detection is more of a binary check to see whether there are any collisions or not. This
does not require distance computations between shapes. However, collision detection
does require a high-fidelity model for correctness. Our research led to the separation of
these two tasks, as in essence they both have different functions. Simply put, obstacle
avoidance guides the robot motions whereas collision detection simply provides an
alarm.

• Showed the feasibility of a high bandwidth robot controller that implements obstacle
avoidance and high fidelity collision detection at rates greater than 100 Hz.

• Developed a generalized simulator for robot surgical environments. From a robotics
perspective, this simulator offers significantly higher functionality then previous
attempts. If tissue models can be integrated with this simulator, it could provide a better
simulation environment for surgeon training on the Da Vinci and the use of the trauma
pod.

REPORTABLE OUTCOMES

Awards
• Three engineering researchers from the Robotics Research Group at The University of

Texas at Austin won an award for a paper they co-produced, “Real-Time Robot
Capability Analysis. (see Appendix G)” Dr. Chalongrath "Josh" Pholsiri was the
principle researcher and author, and won the “MSC Simulation Software Award” along
with colleagues, Dr. Chetan Kapoor and Dr. Delbert Tesar. They received the award in
September 2005 at the Mechanisms and Robotics Conference of the American Society of
Mechanical Engineers. The conference featured papers and workshops in the field of
mechanical systems, which includes mechanisms, robots and machines. Pholsiri’s paper
documented results of a study on robotic manipulators used in complex environments.
Specifically, the research results were demonstrated on the Mitsubishi PA-10
manipulator. This is the same manipulator that is being used in the trauma pod. Josh is a
post-doc at the Robotics Research Group and is working full time on the trauma pod
project.

 29

• Dr. Delbert Tesar was awarded the Engelberger Robotics Award in the area of education
at the 36th International Symposium in Robotics held in Tokyo, Japan. Active in robotics
for some 40 years, Tesar leads the largest university-based robotics research group in
mechanical engineering in the United States. To date, the program has graduated 53
Ph.Ds and 129 Masters of Science. Tesar has written 90 position papers, 215 refereed
conference and journal papers and given more than 500 invited lectures. He also holds
several U.S. patents.

Degrees
Student Name Degree Date Research Topic Trauma Pod Role

CONCLUSION
The trauma pod project involves significant integration with research challenges in the area of
manipulator control, world modeling and task planning and execution. The integration
challenges is further heightened by the fact that the prototype subsystems are in different stages
of developments, based on different computing technologies and are from a set of geographically
diverse vendors. This integration challenge has been addressed rather well by the trauma pod
team. The reasons for this are:

1) A control architecture that relies on separation of concerns.
2) A communication architecture that allows flexible communication between any two

subsystems and that uses a descriptive language that can be used to formalize
interfaces.

3) The effective communication between teams due to web based collaboration.
4) The development of emulators and simulators to accelerate integration prior to

hardware availability.
Despite the success of the above, the robustness of this integration and also its ability to work in
a real-time environment still needs to be evaluated. Specifically, the networking system in the
trauma pod has to be stress tested with the full amount of sensor data and control and command
data.

A high fidelity simulator with integrated collision detection was developed and delivered on
time. This simulator can be further enhanced by improving the dynamic behavior of the
mechanical systems in the trauma pod and integrating tissue modeling into it. Such a simulator
can be an invaluable tool for surgeon training and “what if” analysis.

On the robotics front, the feasibility of a complex controller in a distributed environment has
been demonstrated. Additionally, the ability of modern computers and software to successfully
compute complex geometric models in real-time has also been demonstrated. However, the
potential of this development is not fully exploited as the trauma pod consists primarily of a

Jeremy Sevier Masters 9/1/03 -
1/15/06

Resource Optimization for
Industrial Robotic Systems

Kinematics development and
software testing

John Hall Masters 01-2003
to 08-
2005

A Test Bed Framework for
Actuator Management
Operating Software (AMOS)

Software testing

 30

single robot that is under automatic control (scrub nurse). The fast cache does add some
complexity, but it is more of a discrete device due to the limitations of its controller. In the
future trauma pod, multiple manipulators can be expected and the ability of UTA’s robot
software to work in this environment has to be evaluated.

A format for defining the world model of the trauma pod was also developed. This development
leveraged significant previous work at UTA in robotic workcell modeling and control. Based on
the world model format, an instance file for trauma pod has been created. This contains all
geometric information related to the trauma pod and is being used by the collision detection
software, the simulator, the robotic software (SNS, FC, SRS), and the SCS.

Collision detection software developed for the trauma pod provides hi-fidelity collision detection
based on the CAD models of the subsystems. This software computes at rates above 100 Hz and
is being used by the simulator, the SNS software, and the SCS.

The SCS is central to the functioning of the trauma pod. As the SCS integrates and manages all
subsystems, its software design was primarily driven by issues related to scalability, error
handling, and interface evolution. This design and implementation was completed by Q3 and is
now functioning as a part of the emulator network. The task planning and execution capability
of the SCS is probably the most challenging part of this project. The capability deployed in
Phase I will be limited to task execution with minimal planning. The development of fully
automated planning will require significant new research that blends the discipline of artificial
intelligence with the model-based approaches of mechanical systems.

 31

REFERENCES

1. Bass, L., Clements, P., and Kazman, R., 2003, “Software Architecture in Practice,” Addison-Wesley

Professional, Boston, MA.
2. Chien, S., Hill, R., Wang, X., Estlin, T., Fayyad, K., and Mortenson, H., 1996, “Why Real-World

Planning is Difficult: A Tale of Two Applications,” New Directions in AI Planning, IOS Press,
Washington, D.C., pp. 287-298.

3. Elmer G. Gilver, Daniel W. Johnson, S. Sathiya Keerthi, "A Fast Procedure for Computing the
Distance Between Complex Objects in Three-Dimensional Space", IEEE Journal of Robotics and
Automation, Vol 4, No 2, April 1988, pp. 193-203.

4. Harden, T. Kapoor, C. Tesar, D., “Experimental Evaluation of a Criteria-based Obstacle Avoidance
Scheme,” Proceedings of the 1999 ASME Design Engineering Technical Conferences and
Computers in Engineering Conference, September 12-16, 1999, Las Vegas, Nevada.

5. Harden, T. Kapoor, C. Tesar, D., “Obstacle Avoidance Influence Coefficients for Manipulator
Motion Planning,” DETC2005-84223, Proceedings of the ASME 2005 Design Engineering
Technical Conferences and Computers and Information in Engineering Conference, Long Beach,
CA, September 24-28, 2005.

6. Kapoor, C. Tesar, D., “A Reusable Operational Software Architecture for Advanced Robotics,”
Proceedings of the Twelfth CSIM-IFToMM Symposium on theory and Practice of Robots and
Manipulators, Paris, France, July 1998.

7. March, P. Kapoor, C. Tesar, D., “Motion Planning of Robotic Systems for Applications in Nuclear
Facilities Clean-Up,” Proceedings of the 2002 ANS Spectrum Conference, August 2002.

8. Miyawaki, F., Masamune, K., Suzuki, S., Yoshimitsu, K., and Vain, J., 2005, “Scrub Nurse Robot
System-Intraoperative Motion Analysis of a Scrub Nurse and Timed-Automata-Based Model for
Surgery,” IEEE Transactions on Industrial Electronics, 52(5), pp. 1227-1235.
Taylor, R.H., 2003, “Medical Robotics in Computer-Integrated Surgery,” IEEE Transactions on
Robotics and Automation, 19(5), pp. 765-781.

9. Myers, K. L.,1996, “Strategic Advice for Hierarchical Planners”, Proc. of 5th International
Conference of Principles of Knowledge Representation and Reasoning, Aiello, L. C. et al., eds.,
Morgan Kaufmann Publishers Inc., San Francisco, CA, pp. 112–123.

10. Pholsiri, C. Kapoor, C. Tesar, D., “Manipulator Task-Based Performance Optimization,”
Proceedings of ASME 2004 Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Salt Lake City, UT, Sept. 28 - Oct. 2, 2004.

11. Pholsiri, C. Kapoor, C. Tesar, D., “Real-Time Robot Capability Analysis,” DETC2005-84223,
Proceedings of the ASME 2005 Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, Long Beach, CA, September 24-28,2005.

12. Russell, S., and Norvig, P., 2003, Artificial Intelligence: A Modern Approach, Prentice Hall, New
Jersey, pp. 375-461.

13. Tisius, M. S., and Tesar, D., 2004, “An Empirical Approach to Performance Criteria and
Redundancy Resolution”, M.S. Thesis, The University of Texas at Austin, Austin, TX.

14. Van den Bergen, G., "A Fast and Robust GJK Implementation for Collision Detection of Convex
Objects" Journal of Graphics Tools, 4(2):7-25, 1999.

15. Van den Bergen, G., Collision Detection in Interactive 3D Environments, Elsevier, Inc., San
Fransisco, CA, 2004.

 32

APPENDICES

Appendix A: Interaction Diagrams

Tool Change Interaction

sd SDSSupplyDispense

:MVS

(from Objects)

par

par

par

:SNS

(from Objects)

master :UIS

(from Objects)

:SCS

(from Objects)

:SDS

(from Objects)

Name: SDSSupplyDispense
Author: Ed Jung
Version: 1.0
Created: 6/14/2005 3:18:27 PM
Updated: 1/4/2006 12:32:37 PM

EE1 :EndEffector

(from Objects)

ref SNS Return from STZ

ref SNS Enters STZ

In the case where the
position is PARK, the
slotNo is irrelevant and
can be ignored.

SNS should grab the
lug, but not remove the
tray.

consider Cancellation

ref SDS Cancel 2

consider Cancellation

ref SDS Cancel 3

consider Cancellation

ref SDS Cancel 1
This Cancel allows
surgeon to cancel right
in the beginning.

This Cancel happens
after SNS is in SDS
transfer zone and the
SDS has depackaged
the requested supply

This Cancel happens
after the SNS has
acquired the supply tray.
No Cancels are allowed
after this point, that is,
after the Da Vinci has
parked.

GenericRsp:= ExecuteTaskCmd(taskInfo,taskType)

SDSLocateSupplyCmd(Sponge)

SDSLocateSupplyRsp(SDSZone, SDSSlot,
?TrayHandle)

GenericRsp:=
SNSChangeActiveToolCmd(EE1)

SNSSetGripperStateCmd(EE1,
100)

"Open"

"Done"GenericRsp

GenericRsp:= SNSMoveToEEPoseCmd(moveTime, FreeMotion, SDS-TZ-
A_i)

[SupplyLocation = SDSDispensingZone]: DepackageSupplyRsp(SDSSlot, ?TrayHandle):=
DepackageSupplyCmd(Sponge)

GenericRsp:= SDSFastCacheMoveToCmd(SlotNo, PARK)

MVSLocateTrayLugRsp:= MVSLocateTrayLugCmd(camera,
SDSDispensingZone, slotNo)

GenericRsp:= SNSAcquireTrayLugCmd(Xform = SDS-TZ-G_i, targetName =
SDSDispensingZone)

GenericRsp:= SNSMoveViaEEPosesCmd(moveTime, SNS-TZ-A_i, SNS SuppW)

SDSGetTrayServiceRsp(slot, TraumaPodZone):=
SDSGetTrayServiceCmd(TrayHandle tray)

MoveViaEEPosesCmd(moveTime, FreeMotion, SNS-SuppW, "NextLocation")

Supply Dispense Interaction

sd Change Tool

par

master :UIS

(from Objects)

par PrepareToolChange

:SCS

(from Objects)

EE2 :EndEffector

(from Objects)

:SRS

(from Objects)

ref Parking

ref
Unpark

:TRS

(from Objects)

:SNS

(from Objects)

ref GetNewTool
ToolChange :
GetNewTool

ToolChange :
Unpark

Task = ChangeTool
TaskInfo =
(SRSArm_SRSSlaveLeftArm,
UltrasonicShears, ,)

The location where this command
happens is significant, as it affects
the SNS trajectory and potential
coll isions. The most natural place
for this to occur is at SNS-ToolW.

ref
TASToolSwap

At the end of this task,
the active EE will be
changed and empty.
(i.e., start with EE2
active and empty,
finish with EE1 active
and empty).

ToolChange :
TRS Tool Insert
(ForceControl)

ref TRS Tool Insert (PickAndPlace)

ref Prompt Surgeon

consider Cancellation

ref Cancel 2

consider Cancellation

consider Cancellation

ref Cancel 1

ref Cancel 3

Cancel is exceptional event. On
Cancel, peform the sequence of
actions in this block and then exit
from this task. Do not perform any
action after Cancel in this
diagram.

The UIS may reply with an "OkayToProceedEvt"
or a "CancelCmd" message here.

Must detect proper tool
contact somewhere,
depending on where
carriage movement
occurs.

ExecuteTaskRsp:= ExecuteTaskCmd(taskInfo,taskType)

GenericRsp:= ChangeActiveToolCmd(EE1)

GenericRsp:= SNSMoveViaEEPosesCmd(moveTime, FreeMotion, SNS-TRS-A,
SNS-ToolW)

GenericRsp:=
SNSChangeActiveToolCmd(EE2)

GenericRsp:= SNSMoveToEEPoseCmd(moveTime, targetPose=SNS-TAS_L-A,
targetname=SNS-TAS-L-A, trajectoryType = Automatic)

GenericRsp:= SNSMoveViaEEPosesCmd(moveTime, poses = (SNS-TAS_L-A, SNS-Tool-W),
trajectoryType = Automatic)

GenericRsp:=
SNSChangeActiveToolCmd(EE2)

GenericRsp:= SNSMoveToEEPoseCmd(moveTime, targetPose = SNS-
TRS-A, trajectoryType = Automatic)

sd SNS Manual Lug Calibration

:SCS

(from Objects)

:SNS

(from Objects)

Operator

loop

[for each lug]

SetCalibrationModeCmd(Manual)

"SetGripperCmd"(Open)

GenericRsp

MoveToEEPoseCmd(xyz-G, FineMotion, Automatic, 0, lugID)

"GUI Prompt"

"Complete"

GenericRsp

CalibrateToLugCmd(Xform, LugID)

"Close Grippers, Zero Forces, and
Verify Xform"

"SetGripperCmd"(Open)

CalibrateToLugRsp(Xform)

GenericRsp:= MoveToJointsCmd(jointPos, FreeMotion, Automatic, 0, SNS-W)

"GUI Prompt"

"Complete"

GenericRsp

GenericRsp:= SetCalibrationModeCmd(Off)

Manual Calibration Interaction

sd SNS Auto Lug Calibration

:SCS

(from Objects)

:SNS

(from Objects)

loop

[for each lug]

SetCalibrationModeCmd(Automatic)

"SetGripperCmd"(Open)

GenericRsp

GenericRsp:= MoveToEEPoseCmd(xyz-A, FreeMotion, Automatic, 0)

GenericRsp:= MoveViaEEPoseCmd(xyz-A,xyz-G, FreeMotion, Automatic, 0,
lugID)

CalibrateToLugCmd(Xform, lugId)

"CloseGrippers, Zero Forces, Verify Lug Location"

"SetGripperCmd"(Open)

CalibrateToLugRsp(Xform)

GenericRsp:= MoveToEEPoseCmd(xyz-A, FreeMotion, Automatic, 0)

GenericRsp:= MoveToJointsCmd(jointPos, FreeMotion, Automatic, 0, SNS-W)

GenericRsp:= SetCalibrationModeCmd(Off)

Automatic Calibration Interaction

Appendix B: Layout and Timing Analysis

Doc. No. CTL-038-R01

SUBSYSTEM INTERFACE LOCATIONS
Trauma Pod Phase I

Date: September 15, 2005

Prepared by

Josh Pholsiri

Chetan Kapoor
University of Texas

for

USA Medical Research Acquisition Activity
820 Chandler St.

Fort Detrick, MD 21702-5014

Layout Analysis and Interface Locations
 The purpose of this document is to identify the physical locations of the interfaces for all subsystems and
the physical locations of all the points of interest as defined in the logical layout below. For points that are also the
SNS grab points, the approach points are also identified. Grab locations are designated by G and approach points as
A in the logical layout illustrated in Figure 15.

Figure 15: Logical Layout of Trauma Pod (from Trauma Pod web site).

Figure 16 depicts the physical layout of trauma pod as of 12/02/2005. This layout has been achieved through motion
and workspace analysis of all the relevant subsystems.

Figure 16: Physical layout of Trauma Pod.

SDS

TRS

SNS

SRS

Fast Cache

SNS and Global Coordinates
 It is agreed upon that all coordinates should be measured with respect to SNS, so we define the global
coordinates as follow. The global origin is located directly below the center of the SNS base (inline with the first
SNS joint) on the floor and the X and Y axes1 are shown in Figure 17. The Z direction points upward. A location
consists of a position and an orientation. All the positions in this document are measured in meters with respect to
this frame. Since we’re operating on a patient who lies on PRS, its height dictates the Z-location of SNS. It was
determined that SNS pedestal should be approximately 0.718 m high. Note also that the cable connectors of SNS
robot faces towards TRS. Note that, the joint angles of the SNS robot are all zeros in the configuration shown in
Figure 17.

Figure 17: SNS and Global Coordinate Frame

1 In this document, the coordinate axes are represented as follows: X is red, Y is green, and Z is blue, unless
otherwise stated.

X

Y

 The SNS at home position is shown in Figure 18. The joint angles of the SNS at home position are 0.0,
0.7854, 0.0, -1.5708, 0.0, -0.7854, and 0.0 radians from Joint 1 to Joint 7, respectively (or 0, 45, 0, -90, 0, -45, and 0
degrees). Also shown in the figure are the definitions of the grippers EE1 and EE2.

Figure 18: SNS at Home Position.

Grab Locations

Pictures in Figure 19 (a) show the grab frames of the SNS grippers. The origins of these frames are in the
middle of the two fingers and should be where the center of the lug should be when SNS grabs something (tray or
tool). The physical locations (positions and orientations) to be defined later in this document are essentially the
locations of one of these grab frames in the 3D workspace with respect to the global coordinates defined above.

EE1

EE2

Figure 19: Grab Frames of the Grippers.

SDS
 When positioning SDS, we need to ensure that SNS can reach the following points: SNS-SDS-1 to 10,
SNS-SDS-W, SNS-SDS-CAL-1, and SNS-SDS-CAL-2 (top and bottom SDS calibration lugs). The SDS must be
placed in such a location that the points of interest in Table 6 can be achieved. Figure 20 shows SDS and its origin,
which is located right at the top calibration lug.

Figure 20: Location of SDS.

Location Description Coordinates (X,Y,Z)

X

SDS-BASE
SNS-SDS-CAL-1-G
SNS-SDS-CAL-1-A
SNS-SDS-CAL-2-G
SNS-SDS-CAL-2-A
SNS-SDS-1-G
SNS-SDS-1-A
SNS-SDS-10-G
SNS-SDS-10-A
SNS-SDS-W-G
SNS-SDS-W-A

Origin of SDS
Grab point for top SDS calibration lug
Approach point for top SDS calibration lug
Grab point for bottom SDS calibration lug
Approach point for bottom SDS calibration lug
Grab point at the topmost slot2
Approach point at the topmost slot
Grab point at the bottommost slot
Approach point at the bottommost slot
Grab point above the waste basket
Approach point above the waste basket

(-0.65, 0.50, 1.61)
(-0.65, 0.50, 1.61)
(-0.55, 0.50, 1.61)
(-0.65, 0.50, 0.95)
(-0.55, 0.50, 0.95)
(-0.65, 0.50, 1.55)
(-0.50, 0.50, 1.55)
(-0.65, 0.50, 1.01)
(-0.50, 0.50, 1.01)
(-0.57, 0.50, 0.92)
(-0.42, 0.50, 0.92)

Table 6: SDS Positions of Interest in Global Coordinates.

 The orientations of all these locations are the same and can be described by the following rotation matrix:
[0 0 -1, 0 -1 0, -1 0 0]3. This is basically the orientation the SNS gripper needs to be in for a successful grab. Note
that these points are contingent upon the background plate being moved inside closer to the SDS slots. The
background plate should be moved to -0.1 m in the Y-direction of the SDS coordinates and should be limited to 0.09
m wide (off the SDS wall) if possible.

Fast Cache

For Fast Cache (FC), we are interested in where it is placed in the workspace, where the SNS-FC grab point
is, whether or not it can reach the two STZ’s, all of these without interfering with other subsystems, especially the
PRS and SNS. To simply FC positioning, the FC is mounted on a linear track. For easy identification, we’ll use the
top left corner of the surface of the linear track plate as the origin of the reference frame of FC. This frame is shown
in Figure 21. The location of this frame in the global coordinates is the position of (0.668, 1.017, 0.1813) m with the
orientation of [0 1 0, -1 0 0, 0 0 1]. Figure 21 also shows FC at the home position proposed by GDRS.

Figure 21: FC Location.

Table 7 contains the positions of interest of FC in the global coordinates from an SNS perspective. The

orientation of the locations in Table 7 (except FC-BASE) is [0 -1 0, 0 0 1, -1 0 0].

2 The grab and approach points for the other 8 slots are evenly distributed between the topmost and the bottommost
slots.
3 To be able to write a rotation matrix on one line, all the rotation matrices are represented as row-major vectors,
with commas separating each row.

Reference
Frame

Location Description Coordinates (X,Y,Z)
FC-BASE
SNS-FC-CAL-G
SNS-FC-CAL-A
SNS-FC-G
SNS-FC-A

Origin of FC
FC calibration lug
FC calibration lug approach point
Supply tray exchange between SNS and FC
Approach point for SNS-FC interaction

(0.668, 1.017, 0.1813)
(0.393, 0.596, 1.071)
(0.393, 0.496, 1.071)
(0.393, 0.596, 1.081)
(0.393, 0.446, 1.081)

Table 7: FC Positions of interest in Global Coordinates.

With FC at the proposed location, Table 8 shows the joint displacements of FC defined for the FC’s points
of interest. Please refer to the document “CTL-039-R01-Fast Cache Kinematics” for detailed descriptions of these
joints. These FC configurations are depicted visually in Table 9.

Point of interest Joint 1 (m) Joint 24
(deg)

Joint 3
(m)

Joint 4
(deg)

Joint 5
(deg)

Joint 6
(deg)

Joint 7
(deg)

FC-HOME 0 0 0 -34 -34 -17 0
FC-STZ 0.452 105 -0.012 -130 130 -65 5
FC-W 0.452 54 -0.012 -90 90 -45 56

FC-SNS 0 -83 -0.012 -34 34 -17 -35
FC-PARK 0 -83 -0.312 -34 34 -17 -35

FC-SNS-CAL 0 -83 -0.012 -34 34 -17 10
Table 8: Proposed FC Joint Configurations for Various Positions.

Note that the wrist angle (Joint 7) depends on which slot is currently being used (except for FC-SNS-CAL

point in which the wrist angle must be at the specified value). So it could be the values specified in the table plus or
minus -90/90/180 degrees (-1.5708/1.5708/ 3.1416 radians). To increase the effectiveness of calibration, the
Calibration configuration is chosen such that it is as close to FC-SNS position as possible. So basically, FC-SNS-
CAL is the same as FC-SNS except for the wrist joint. This allows SNS to move to essentially the same location
during both supply exchange and calibration. Table 9 also shows the locations of the wrist of FC at different
configurations in the local FC coordinates. These locations are essentially the locations of the coordinate frame
shown in Figure 22. The SCS will command the FC controller to go these locations at appropriate times.

4 Note that Joint 2 angle is made up of two parts. One part is the rotation that contributes to the rotation of the entire
arm and the other part is the rotation that contributes to the arm extension.

Figure 22: Coordinate frame at wrist of FC.

Point of
interest

FC Configuration Location of Wrist in Local
Coordinates5

FC-STZ

Position:
(1.0159, 0.1849, 0.8894)

Orientation:
[-0.70711 -0.70711 0,
0.70711 -0.70711 0,

0 0 1]

5 Note that these locations are copied from the document titled “CTL-039-R01-Fast Cache Kinematics.” Please refer
to that document for updated values of these locations.

Point of
interest

FC Configuration Location of Wrist in Local
Coordinates5

FC-W

Position:
(1.0443, -0.0161, 0.8894)

Orientation:
[-0.90631 -0.42262 0,

0.42262 0.90631 0,
0 0 1]

FC-SNS

Position:
(0.2255, -0.2752, 0.8894)

Orientation:
[0.70711 0.70711 0,
-0.70711 0.70711 0,

0 0 1]

FC-PARK

Position:
(0.2255, -0.2752, 0.5894)

Orientation:
[0.70711 0.70711 0,
-0.70711 0.70711 0,

0 0 1]

FC-SNS-
CAL

Position:
(0.2255, -0.2752, 0.8894)

Orientation:
[1 0 0,
0 1 0,
0 0 1]

Table 9: Visual Representations and Locations of Various FC Configurations.

Because FC almost always operates at the top of its vertical axis, which is also the home position, the
homing sequence is simplified. Assuming that when the vertical axis homes, it always moves UP, here’s a proposed
homing sequence.

1. Home the vertical axis (if necessary).
2. Home the extension arm.
3. Home the shoulder joint.
4. Home the linear track.
5. Home the wrist joint.

TRS
 SNS needs to retrieve and return tools to TRS, so the SNS-TRS Grab point must be reachable by SNS. The
SNS-TRS Grab point is essentially the locations of the lug on the tool when the tool is to be retrieved/ returned by
SNS from/to the slot in TRS. There is one Grab point and three associated Approach points, all of which are shown
in Figure 24. The two scenarios for the SNS-TRS exchange involving these Grab and Approach points are
described below.

1. SNS retrieving a tool: Here, the active gripper does not currently hold a tool. Thus, it can come directly at
SNS-TRS-G (via SNS-TRS-A-1). Once, it grabs the tool, it needs to move up to SNS-TRS-A-3 and then
out to SNS-TRS-A-2.

2. SNS returning a tool: Here, the active gripper currently holds a tool. Therefore, it needs to pass through
SNS-TRS-A-2 and SNS-TRS-A-3. It can then move down to SNS-TRS-G. Once, it lets go of the tool, it can
move straight out of TRS through SNS-TRS-A-1.
The TRS calibration lug is assumed to be at the same location as SNS-TRS-G-2. It has been determined that

the origin of TRS, which is at the top of the spool as shown in Figure 23, should be located at (0.0, -1.0, 1.38) m
with the orientation [-1 0 0, 0 -1 0, 0 0 1]. All points relevant to the TRS are listed in Table 10. Note that the
orientation of all locations (except TRS-BASE) is [0 1 0, 0 0 -1, -1 0 0]. The approach points A-1 and A-2 are
basically offset a distance of 0.1 m from the grab point in the global Y direction.

Location Description Position (X,Y,Z)
TRS-BASE
SNS-TRS-G
SNS-TRS-A-1
SNS-TRS-A-2
SNS-TRS-A-3
SNS-TRS-CAL-G
SNS-TRS-CAL-A

Origin of TRS
Grab point for SNS
Approach point if the active gripper does not hold a tool
Approach point if the active gripper already holds a tool
Approach point right above SNS-TRS-G
Calibration lug grab point for SNS
Calibration lug approach point for SNS

(0.0, -1.0, 1.38)
(0.0, -0.73, 1.325)
(0.0, -0.63, 1.325)
(0.0, -0.63, 1.37)
(0.0, -0.73, 1.37)
(0.0, -0.73, 1.325)
(0.0, -0.63, 1.325)

Table 10: TRS grab and approach points in global coordinates

Figure 23: Origin of TRS.

Figure 24: Grab and Approach Points for the TRS.

PRS
 The location of PRS determines the locations of the Surgical Transfer Zones (STZ), which are the area
where SRS and SNS exchange supplies with each other. Another important location is the area outside STZ at which
SNS waits for a go-ahead command from the surgeon that he is ready for supply delivery.

Figure 25: Origin of PRS.

Figure 25 shows the origin of PRS, which is located at the center of the top surface. The X and Y axes are
shown in red and green, respectively, with the Z axis pointing out of the page. The location of the PRS origin in
global coordinates: (1.1, 0.0, 0.82) with an orientation of [-1 0 0, 0 -1 0, 0 0 1]. Note that the Z location (0.8 m) is

Scanner Head

SNS-TRS-A-3

SNS-TRS-G

SNS-TRS-A-2

SNS-TRS-A-1

actually whatever the height of the bed is. The scanner head, when parked, should be at 0.8 m from this origin in the
Y-direction of the PRS coordinates. The locations of the calibration lugs in the PRS coordinates are shown in Table
11.

Location Description PRS Coordinates

(X,Y,Z)
PRS-SNS-CAL-1
PRS-SNS-CAL-2

Calibration lug 1 on PRS
Calibration lug 2 on PRS

(0.3, -0.3, 0.0)
(0.3, 0.3, 0.0)

Table 11: PRS Calibration Lugs in PRS Coordinates.

The locations of the points of interest for PRS are shown in Table 12. The orientation of these locations

(except PRS-BASE) are [0 0 1, 0 1 0, -1 0 0].

Location Description Position (X,Y,Z)
PRS-BASE
SNS-PRS-CAL-1-G
SNS-PRS-CAL-1-A
SNS-PRS-CAL-2-G
SNS-PRS-CAL-2-A
SNS-STZ-G
SNS-STZ-A

Origin of PRS
Calibration lug 1 grab location on PRS
Calibration lug 1 approach location on PRS
Calibration lug 2 grab location on PRS
Calibration lug 2 approach location on PRS
Grab location for supply exchange between SNS and SRS
Approach location for supply exchange between SNS and
SRS

(1.1, 0.0, 0.82)
(0.8, 0.3, 0.82)
(0.8, 0.3, 0.92)
(0.8, -0.3, 0.82)
(0.8, -0.3, 0.92)
(0.93, 0, 1.081)
(0.83, 0, 1.081)

Table 12: Points of interest of PRS in Global Coordinates.

 Since there will be a camera to check the supplies before they are delivered to STZ, it is desirable to have
the waiting areas for both SNS and FC at the same location. With FC-W configuration provided in Table 8 and the
SNS-SUPP-W location given below, this goal is accomplished.

Location Description Location
SNS-SUPP-W Waiting area before delivering

supply to SRS

Position:
(0.73, 0.0, 1.081)

Orientation:
[0 -0.33660 0.94165,
0 0.94165 0.33660,

-1 0 0]
Table 13: Waiting point for supply delivery

SRS

SNS needs to retrieve or insert tools to or from SRS. It thus needs to be able to reach left and right TAS.
For this, we have determined that the base of SRS, which is frame F0 of SRS in the da Vinci kinematics document,
should be positioned at (2.275, 0, 0.168) m with the orientation of [0 -1 0, 1 0 0, 0 0 1] as expressed in the global
coordinate frame.

Figure 26: Base of SRS.

 During a tool change, the left and right arms of SRS are commanded to move to predetermined
configurations. These configurations are detailed in Table 14. SUJ stands for set up joint (or passive joint) and SLV
stands for slave joint (or active joint).

Joint SRS-Left SRS-Right SRS-Camera
SUJ-1 (m)

SUJ-2 (rad / deg)
SUJ-3 (rad / deg)
SUJ-4 (rad / deg)
SUJ-5 (rad / deg)
SUJ-6 (rad / deg)

0.1008
0.3927 / 22.5
1.5882 / 91.0
0.3229 / 18.5
0.0550 / 3.15

-0.6411 / -36.73

0.1008
-0.3927 / -22.5
-1.5882 / -91.0
-0.3229/ -18.5
-0.0550 / -3.15
0.6411 / 36.73

0.8428
0.5441 / 31.18

-1.0884 / -62.36
-2.5974 / -148.82

N/A
N/A

SLV-1 (rad / deg)
SLV-2 (rad / deg)

SLV-3 (m)

-0.1747 / -10.01
0.1747 / 10.01

0.0

0.1747 / 10.01
0.1747 / 10.01

0.0

0.0
-0.7854 / -45.0

0.0
Table 14: Joint configurations of SRS during tool change.

Based on the joint configurations in Table 14, the locations of SNS-TAS-L and SNS-TAS-R are determined
and shown in Table 15.

Location Description Location

SRS-BASE Origin of SRS Position:
(2.275, 0, 0.168)

Orientation:
[0 -1 0,
1 0 0,
0 0 1]

SNS-TAS-L-G
SNS-TAS-L-CAL-G

Tool change between SNS and left
TAS. Same applies to calibration lug
position.

Position:
(0.902, 0.181, 1.567)

Orientation:
[0.2242 -0.08326 0.9709,
-0.1938 0.9726 0.1281,
-0.9550 -0.2169 0.2019]

SNS-TAS-L-A
SNS-TAS-L-CAL-A

Approach points for tool change
between SNS and left TAS. Same
applies to calibration lug position.

Position:
(0.805, 0.168, 1.547)

Orientation:
[0.2242 -0.08326 0.9709,
-0.1938 0.9726 0.1281,
-0.9550 -0.2169 0.2019]

SNS-TAS-R-G
SNS-TAS-R-CAL-G

Tool change between SNS and right
TAS. Same applies to calibration lug
position.

Position:
(0.902, -0.181, 1.567)

Orientation:
[0.2242 0.08326 0.9709,
0.1938 0.9726 -0.1281,
-0.9550 0.2169 0.2019]

SNS-TAS-R-A
SNS-TAS-R-CAL-A

Approach points for tool change
between SNS and right TAS. Same
applies to calibration lug position.

Position:
(0.805, -0.168, 1.547)

Orientation:
[0.2242 0.08326 0.9709,
0.1938 0.9726 -0.1281,
-0.9550 0.2169 0.2019]

SNS-TOOL-W Waiting area before delivering tools
to SRS

Position:
(0.6, 0.0, 1.62)
Orientation:

[0 0 1,
0 1 0,
-1 0 0]

Table 15: Tool-related points of interest in Global Coordinates.

Open Issues
None

Resolved Issues

1. Evaluate SNS motion with new SRS configurations (as of Dec. 1, 2005) for tool changing procedure.
New SRS configurations (as of Dec. 1, 2005) for tool change work fine.

2. Change STZ from dual zones to a single zone and re-evaluate SNS and FC motion and configuration.
For both the issues above, the patient seems to be pretty high above the bed, and as such, the tool

tips come close to the patient during a tool change. The STZ also had to be raised to 1.055 m above the
floor (global frame) because of the thickness of the patient. A lower STZ will be fine from the SNS
perspective, provided the patient is thinner. At this point, we should really replace the patient CAD
with the CAD of the actual phantom that we are going to use.

3. Move the top calibration lug on SDS to 1.61 m from 1.31 m and re-evaluate SNS motion.
a. The upper calibration lug at (-0.65, 0.50, 1.61) m in the global coordinate is fine. SNS can reach

it.
b. The lower calibration lug, which is now at (-0.65, 0.50, 0.95) m in the layout document, should be

move up a little bit because when SNS removes trays to waste bin (the grab point at (-0.55, 0.50,
0.92) m), the tray could hit the lower cal lug. Note, however, that we don’t have CAD with the
lower cal lug, so this is just an educated guess. Basically, 0.92 m is the lowest SNS can go
comfortably, so the waste bin can’t be moved down. I’d suggest moving the lower cal lug to 0.98 m
just to be safe. Of course, it could go higher now that the upper cal lug is probably at 1.61 m.

4. Evaluate SNS motion over FC. Preliminary analysis tells us that, with motion coordination with FC, the
SNS can safely move over the FC, and after a move over the FC, it can then move down to the SNS-SUPP-
W-1 and SNS-SUPP-W-2 points.

The motion coordination between SNS and FC should be like this. When FC is at FC-W (in front of
STZ), SNS is most likely at SNS-HOME. If the surgeon needs a supply that is in SC, then the following
sequence occurs.
a. SNS moves to SNS-SDS-SC while FC moves to FC-PARK at the same time.
b. SNS get a tray from SC but must wait until FC reaches FC-PARK.
c. Once FC is at FC-PARK, SNS can move to SNS-SUPP-W, awaiting command from the surgeon

before bringing supply to SNS-STZ.

General rule: FC is not allowed to move while SNS is in motion and vice versa, except for the
above scenario.

1. For supply exchange between SNS and FC, SNS is not allowed to move until FC rests at
FC-SNS.

5. Interference of the mounting bracket for SNS cameras and the next-to-last link of PA-10 robot. The height
of the bracket has been increased and it limits the range of motion of the wrist joints (last 3 joints) of PA-
10. Occasionally, this could prevent SNS from executing some of the motions.

With the new smaller gripper, the height of the camera mounting bracket has been lowered and no
longer interferes with the PA-10 link.

Appendix C: Fast Cache Kinematics
Doc. No. CTL-039-R01

FAST CACHE KINEMATICS
Trauma Pod Phase I

Date: October 21, 2005

Prepared by

Jonathan Knoll
Chetan Kapoor

University of Texas

for

USA Medical Research Acquisition Activity
820 Chandler St.

Fort Detrick, MD 21702-5014

Zero Position of FC and +/- Directions
This model was created assuming 7 joints so that each part could be properly located. The figure below shows the
FC at its zero position, i.e, all joints are at 0 value. Based upon the physical understanding of the FC, limits can be
assigned to each joint. Plus and minus directions are assigned as indicated in the figure. Transformation matrices
representing the Wrist frame relative to the Base frame for this and other configurations are listed in the last section
of this document. Note also that these matrices are only estimates (albeit fairly accurate) since the exact location of
the center of the shoulder joint at its home position is not known.

Zero Position

 Z
 Y Y Base frame Wrist frame

 X
 All Rotations Z X

 +
 + Joint 3

 Calibration Lug
 + Joint 1

Forward Kinematic Analysis (going from the ground to the end effecter):

Joint 1 is the prismatic motion along the base track. + left to right

Joint 2 is the rotation about the cylindrical base. + CC (looking from above)*

Joint 3 is the prismatic motion along the vertical beam. + up

Joint 4 is the rotation of the first link attached to the vertically translating part. + CC (looking from above)

Joint 5 is the rotation of the second link attached to the vertically translating part. + CC (looking from above)

Joint 6 is the rotation of the link that is attached to the carousel. + CC (looking from above)

Joint 7 is the rotation of the carousel. + CC (looking from above)

*Note: All rotations are measured with respect to the previous link and are positive in the counter-clockwise
direction.

Coupled Joint Values:

The Fast Cache can be modeled kinematically with 5 joints if the rotations that make up Joints 4, 5, and 6 are
replaced with one prismatic joint. This one prismatic joint has a value of 0 when the FC is fully retracted (see zero
position). This displacement variable, D, is related to the rotation, θ, of Joints 2, 4, 5, and 6 by the following
equation:

Darcsin
0.3

θ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, where D is the distance between Joint 6 and Joint 2.

Once θ is calculated:
Joint 2prismatic part* = +θ
Joint 4 = -2θ
Joint 5 = +2θ
Joint 6 = -θ

* It is important to note that each Joint 2 value is made up of two parts. One part is the rotation that contributes to
the rotation of the entire arm and the other part is the rotation that contributes to the translational distance, D.

Appendix D: Trauma pod.xml
 <rrgOSCAR:Workcell xmlns:rrgOSCAR="http://www.robotics.utexas.edu" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
Name="Trauma Pod Version 1.0">
 <Manipulator Name="SNS">
 <DHParameters>
<FrameLocationMethod>Paul</FrameLocationMethod>
 <Frame>
<alpha>0</alpha>
<a>0
<d>0</d>
</Frame>
 <Frame>
<alpha>-90</alpha>
<a>0
<d>0</d>
</Frame>
 <Frame>
<alpha>90</alpha>
<a>0
<d>0.450</d>
</Frame>
 <Frame>
<alpha>-90</alpha>
<a>0
<d>0</d>
</Frame>
 <Frame>
<alpha>90</alpha>
<a>0
<d>0.480</d>
</Frame>
 <Frame>
<alpha>-90</alpha>
<a>0
<d>0</d>
</Frame>
 <Frame>
<alpha>90</alpha>
<a>0
<d>0</d>
</Frame>
</DHParameters>
<BasePose>-1 0 0 0 0 -1 0 0 0 0 1 1.035 0 0 0 1</BasePose>
<ToolPlatePose>1 0 0 0 0 1 0 0 0 0 1 0.07 0 0 0 1</ToolPlatePose>
 <Limits>
 <Position>
- <!-- These are all in degrees -->
 <Frame>
<Min>-177</Min>
<Max>177</Max>
</Frame>
 <Frame>
<Min>-94</Min>
<Max>94</Max>
</Frame>
 <Frame>
<Min>-174</Min>
<Max>174</Max>
</Frame>
 <Frame>
<Min>-137</Min>
<Max>137</Max>
</Frame>
 <Frame>
<Min>-255</Min>
<Max>255</Max>

</Frame>
 <Frame>
<Min>-165</Min>
<Max>165</Max>
</Frame>
 <Frame>
<Min>-255</Min>
<Max>255</Max>
</Frame>
</Position>
 <Velocity>
- <!-- These are all in radians/sec -->
 <Frame>
<Min>-1.4</Min>
<Max>1.4</Max>
</Frame>
 <Frame>
<Min>-1.4</Min>
<Max>1.4</Max>
</Frame>
 <Frame>
<Min>-2.25</Min>
<Max>2.25</Max>
</Frame>
 <Frame>
<Min>-2.25</Min>
<Max>2.25</Max>
</Frame>
 <Frame>
<Min>-6.28</Min>
<Max>6.28</Max>
</Frame>
 <Frame>
<Min>-6.28</Min>
<Max>6.28</Max>
</Frame>
 <Frame>
<Min>-6.28</Min>
<Max>6.28</Max>
</Frame>
</Velocity>
 <Acceleration>
- <!-- These are all in radians/sec2 -->
 <Frame>
<Min>-7</Min>
<Max>7</Max>
</Frame>
 <Frame>
<Min>-5</Min>
<Max>5</Max>
</Frame>
 <Frame>
<Min>-10</Min>
<Max>10</Max>
</Frame>
 <Frame>
<Min>-7.5</Min>
<Max>7.5</Max>
</Frame>
 <Frame>
<Min>-68</Min>
<Max>68</Max>
</Frame>
 <Frame>
<Min>-36</Min>
<Max>36</Max>
</Frame>
 <Frame>

<Min>-40</Min>
<Max>40</Max>
</Frame>
</Acceleration>
</Limits>
 <ObstacleModel>
<Frame Name="Frame 0" />
 <Frame Name="Frame 1">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>.080</Radius>
<Point>0 .125 -.025</Point>
<Point>0 -.125 -.025</Point>
</Cylisphere>
 <Polytope>
<STLFile>/SNS/Frame1.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 2">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>.080</Radius>
<Point>0 0 0</Point>
<Point>0 -.400 0</Point>
</Cylisphere>
 <Polytope>
<STLFile>/SNS/Frame2.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 3">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>.080</Radius>
<Point>0 .125 -.025</Point>
<Point>0 -.125 -.025</Point>
</Cylisphere>
 <Polytope>
<STLFile>/SNS/Frame3.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 4">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>.090</Radius>
<Point>0 0 0</Point>
<Point>0 -.5 0</Point>
</Cylisphere>
 <Polytope>
<STLFile>/SNS/Frame4.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 5">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SNS/Frame5.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 6">

<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>.060</Radius>
<Point>0 -.125 0</Point>
<Point>0 .075 0</Point>
</Cylisphere>
 <Polytope>
<STLFile>/SNS/Frame6.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 7">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Box>
<XDimension>.1</XDimension>
<YDimension>.145</YDimension>
<ZDimension>.2</ZDimension>
<Pose>1 0 0 0 0 .945519 .325568 .095 0 -.325568 .945519 .21 0 0 0 1</Pose>
</Box>
 <Box>
<XDimension>.1</XDimension>
<YDimension>.145</YDimension>
<ZDimension>.2</ZDimension>
<Pose>1 0 0 0 0 .945519 -.325568 -.095 0 .325568 .945519 .21 0 0 0 1</Pose>
</Box>
 <Polytope>
<STLFile>/SNS/Frame7.STL</STLFile>
</Polytope>
</Primitives>
 <Children>
 <Node Name="Gripper">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SNS/SimpleGripper.STL</STLFile>
</Polytope>
</Primitives>
</Node>
</Children>
</Frame>
</ObstacleModel>
 <ConfigurationsOfInterest>
 <Configuration Name="SNS-HOME">
<JointValue>0 45 0 -90 0 -45 0</JointValue>
</Configuration>
</ConfigurationsOfInterest>
</Manipulator>
 <Manipulator Name="FastCache">
 <DHParameters>
<FrameLocationMethod>Paul</FrameLocationMethod>
 <Frame>
<alpha>-90</alpha>
<a>0
<theta>0</theta>
<Offset>-0.255229</Offset>
</Frame>
 <Frame>
<alpha>90</alpha>
<a>0
<d>0</d>
<Offset>0</Offset>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0.0750
<theta>0</theta>

<Offset>0.7815576</Offset>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0
<d>0</d>
<Offset>180</Offset>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0.15
<d>-0.027</d>
<Offset>180</Offset>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0.075
<d>-0.027</d>
<Offset>90</Offset>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0.1222375
<d>-0.03987</d>
<Offset>0</Offset>
</Frame>
</DHParameters>
<BasePose>0 1 0 .51723 -1 0 0 -.068453 0 0 1 .21374 0 0 0 1</BasePose>
<ToolPlatePose>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</ToolPlatePose>
 <ObstacleModel>
 <Frame Name="Frame 0">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/FastCache/Frame0.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 1">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/FastCache/Frame1.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 2">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>0.064</Radius>
<Point>0.01 -0.084 -0.024</Point>
<Point>0.01 -0.084 0.806</Point>
</Cylisphere>
 <Polytope>
<STLFile>/FastCache/Frame2.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 3">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>0.064</Radius>
<Point>-0.02 -0.084 -0.0814</Point>
<Point>-0.02 -0.084 0</Point>
</Cylisphere>
 <Polytope>

<STLFile>/FastCache/Frame3.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 4">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>0.035</Radius>
<Point>0 0 -0.013</Point>
<Point>0.15 0 -0.013</Point>
</Cylisphere>
 <Polytope>
<STLFile>/FastCache/Frame4.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 5">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>0.035</Radius>
<Point>0 0 -0.013</Point>
<Point>0.075 0.000000 -0.013</Point>
</Cylisphere>
 <Polytope>
<STLFile>/FastCache/Frame5.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 6">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>0.05</Radius>
<Point>0 0 -0.013</Point>
<Point>0.12 0 -0.013</Point>
</Cylisphere>
 <Polytope>
<STLFile>/FastCache/Frame6.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 7">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Box>
<XDimension>0.35</XDimension>
<YDimension>0.35</YDimension>
<ZDimension>.02</ZDimension>
<Pose>0.70710678 -0.70710678 0 0 0.70710678 0.70710678 0 0 0 0 1 0 0 0 0 1</Pose>
</Box>
 <Polytope>
<STLFile>/FastCache/Frame7.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
</ObstacleModel>
 <ConfigurationsOfInterest>
 <Configuration Name="FC-HOME">
<JointValue>0 0 0 -34 34 -17 0</JointValue>
</Configuration>
 <Configuration Name="FC-STZ">
<JointValue>0.452 105 -0.012 -130 130 -65 95</JointValue>
</Configuration>
 <Configuration Name="FC-W">
<JointValue>0.452 54 -0.012 -90 90 -45 146</JointValue>
</Configuration>

 <Configuration Name="FC-SNS">
<JointValue>0 -83 -0.012 -34 34 -17 55</JointValue>
</Configuration>
 <Configuration Name="FC-PARK">
<JointValue>0 -83 -0.312 -34 34 -17 55</JointValue>
</Configuration>
 <Configuration Name="FC-SNS-CAL">
<JointValue>0 -83 -0.012 -34 34 -17 100</JointValue>
</Configuration>
</ConfigurationsOfInterest>
</Manipulator>
 <Manipulator Name="SRS Left SUJ">
 <DHParameters>
<FrameLocationMethod>Paul</FrameLocationMethod>
 <Frame>
<alpha>0</alpha>
<a>0.0896
<theta>0</theta>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0
<d>0.4166</d>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0.4318
<d>0.1429</d>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0.4318
<d>-0.1302</d>
<Offset>90</Offset>
</Frame>
 <Frame>
<alpha>90</alpha>
<a>0
<d>0.4089</d>
</Frame>
 <Frame>
<alpha>-90</alpha>
<a>0
<d>-0.1029</d>
<Offset>-90</Offset>
</Frame>
</DHParameters>
<BasePose>1 0 0 0.1016 0 1 0 -.1016 0 0 1 .43 0 0 0 1</BasePose>
- <!-- Identity -->
<ToolPlatePose>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</ToolPlatePose>
 <ObstacleModel>
<Frame Name="Frame 0" />
 <Frame Name="Frame 1">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame1.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 2">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame2.STL</STLFile>
</Polytope>
</Primitives>
</Frame>

 <Frame Name="Frame 3">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame3.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 4">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame4.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 5">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame5.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 6">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame6.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
</ObstacleModel>
 <ConfigurationsOfInterest>
 <Configuration Name="TOOL-PARK">
<JointValue>0.1008 22.5 91 18.5 3.15 -36.73</JointValue>
</Configuration>
</ConfigurationsOfInterest>
</Manipulator>
 <Manipulator Name="SRS Left PSM">
 <DHParameters>
<FrameLocationMethod>Paul</FrameLocationMethod>
 <Frame>
<alpha>90</alpha>
<a>0
<d>0</d>
<Offset>90</Offset>
</Frame>
 <Frame>
<alpha>-90</alpha>
<a>0
<d>0</d>
<Offset>-90</Offset>
</Frame>
 <Frame>
<alpha>90</alpha>
<a>0
<theta>0</theta>
<Offset>-0.4318</Offset>
</Frame>
</DHParameters>
<BasePose>0 1 0 0.4864 -1 0 0 0 0 0 1 0.1524 0 0 0 1</BasePose>
- <!-- Identity -->
<ToolPlatePose>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</ToolPlatePose>
 <ObstacleModel>
<Frame Name="Frame 0" />
 <Frame Name="Frame 1">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>

 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame7.STL</STLFile>
</Polytope>
</Primitives>
 <Children>
 <Node Name="4BarA">
<LocalXform>1 0 0 0 0 0 1 0 0 -1 0 0.52776 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/4BarA.STL</STLFile>
</Polytope>
</Primitives>
</Node>
 <Node Name="4BarB">
<LocalXform>1 0 0 0.039444015 0 1 0 0.147207097762 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/4BarB.STL</STLFile>
</Polytope>
</Primitives>
</Node>
 <Node Name="4BarC">
<LocalXform>1 0 0 0.039444015 0 1 0 0.18531 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/4BarC.STL</STLFile>
</Polytope>
</Primitives>
</Node>
</Children>
</Frame>
 <Frame Name="Frame 2">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame8.STL</STLFile>
</Polytope>
 <Cylisphere>
<Radius>.050</Radius>
<Point>0.040000 0.550000 0.000000</Point>
<Point>0.040000 0.100000 0.000000</Point>
</Cylisphere>
</Primitives>
</Frame>
 <Frame Name="Frame 3">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/TAS.STL</STLFile>
</Polytope>
 <Box>
<XDimension>0.05</XDimension>
<YDimension>0.1</YDimension>
<ZDimension>0.15</ZDimension>
<Pose>1 0 0 0 0 1 0 0 0 0 1 -0.02 0 0 0 1</Pose>
</Box>
</Primitives>
 <Children>
 <Node Name="Tool2">
<LocalXform>0 0 1 0 0 -1 0 0 1 0 0 0 0 0 0 1</LocalXform>
 <Primitives>
 <Box>
<XDimension>0.104</XDimension>
<YDimension>0.065</YDimension>
<ZDimension>0.035</ZDimension>
<Pose>1 0 0 -0.012 0 1 0 0 0 0 1 0.025 0 0 0 1</Pose>
</Box>

 <Cylisphere>
<Radius>.01</Radius>
<Point>0.040000 0.000000 0.025000</Point>
<Point>0.430000 0.000000 0.025000</Point>
</Cylisphere>
</Primitives>
</Node>
</Children>
</Frame>
</ObstacleModel>
 <ConfigurationsOfInterest>
 <Configuration Name="TOOL-PARK">
<JointValue>-10.01 10.01 0</JointValue>
</Configuration>
</ConfigurationsOfInterest>
</Manipulator>
 <Manipulator Name="SRS Right SUJ">
 <DHParameters>
<FrameLocationMethod>Paul</FrameLocationMethod>
 <Frame>
<alpha>0</alpha>
<a>0.0896
<theta>0</theta>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0
<d>0.4166</d>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0.4318
<d>0.1429</d>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0.4318
<d>-0.1302</d>
<Offset>90</Offset>
</Frame>
 <Frame>
<alpha>90</alpha>
<a>0
<d>0.4089</d>
</Frame>
 <Frame>
<alpha>-90</alpha>
<a>0
<d>-0.1029</d>
<Offset>-90</Offset>
</Frame>
</DHParameters>
<BasePose>-1 0 0 -.1016 0 -1 0 -.1016 0 0 1 0.43 0 0 0 1</BasePose>
- <!-- +180 Z -->
<ToolPlatePose>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</ToolPlatePose>
 <ObstacleModel>
<Frame Name="Frame 0" />
 <Frame Name="Frame 1">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame1.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 2">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>

 <Polytope>
<STLFile>/SRS/ToolArms/Frame2.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 3">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame3.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 4">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame4.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 5">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame5.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 6">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame6.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
</ObstacleModel>
 <ConfigurationsOfInterest>
 <Configuration Name="TOOL-PARK">
<JointValue>0.1008 -22.5 -91 -18.5 -3.15 36.73</JointValue>
</Configuration>
</ConfigurationsOfInterest>
</Manipulator>
 <Manipulator Name="SRS Right PSM">
 <DHParameters>
<FrameLocationMethod>Paul</FrameLocationMethod>
 <Frame>
<alpha>90</alpha>
<a>0
<d>0</d>
<Offset>90</Offset>
</Frame>
 <Frame>
<alpha>-90</alpha>
<a>0
<d>0</d>
<Offset>-90</Offset>
</Frame>
 <Frame>
<alpha>90</alpha>
<a>0
<theta>0</theta>
<Offset>-0.4318</Offset>
</Frame>
</DHParameters>
<BasePose>0 1 0 0.4864 -1 0 0 0 0 0 1 0.1524 0 0 0 1</BasePose>
- <!-- -90 Z -->

<ToolPlatePose>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</ToolPlatePose>
 <ObstacleModel>
<Frame Name="Frame 0" />
 <Frame Name="Frame 1">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame7.STL</STLFile>
</Polytope>
</Primitives>
 <Children>
 <Node Name="4BarA">
<LocalXform>1 0 0 0 0 0 1 0 0 -1 0 0.52776 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/4BarA.STL</STLFile>
</Polytope>
</Primitives>
</Node>
 <Node Name="4BarB">
<LocalXform>1 0 0 0.039444015 0 1 0 0.147207097762 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/4BarB.STL</STLFile>
</Polytope>
</Primitives>
</Node>
 <Node Name="4BarC">
<LocalXform>1 0 0 0.039444015 0 1 0 0.18531 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/4BarC.STL</STLFile>
</Polytope>
</Primitives>
</Node>
</Children>
</Frame>
 <Frame Name="Frame 2">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>.050</Radius>
<Point>0.040000 0.550000 0.000000</Point>
<Point>0.040000 0.100000 0.000000</Point>
</Cylisphere>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame8.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 3">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/TAS.STL</STLFile>
</Polytope>
 <Box>
<XDimension>0.05</XDimension>
<YDimension>0.1</YDimension>
<ZDimension>0.15</ZDimension>
<Pose>1 0 0 0 0 1 0 0 0 0 1 -0.02 0 0 0 1</Pose>
</Box>
</Primitives>
 <Children>
 <Node Name="Tool1">
<LocalXform>0 0 1 0 0 -1 0 0 1 0 0 0 0 0 0 1</LocalXform>
 <Primitives>
 <Box>

<XDimension>0.104</XDimension>
<YDimension>0.065</YDimension>
<ZDimension>0.035</ZDimension>
<Pose>1 0 0 -0.012 0 1 0 0 0 0 1 0.025 0 0 0 1</Pose>
</Box>
 <Cylisphere>
<Radius>.01</Radius>
<Point>0.040000 0.000000 0.025000</Point>
<Point>0.430000 0.000000 0.025000</Point>
</Cylisphere>
</Primitives>
</Node>
</Children>
</Frame>
</ObstacleModel>
 <ConfigurationsOfInterest>
 <Configuration Name="TOOL-PARK">
<JointValue>10.01 10.01 0</JointValue>
</Configuration>
</ConfigurationsOfInterest>
</Manipulator>
 <Manipulator Name="SRS Camera SUJ">
 <DHParameters>
<FrameLocationMethod>Paul</FrameLocationMethod>
 <Frame>
<alpha>0</alpha>
<a>0.0896
<theta>0</theta>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0
<d>0.4166</d>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0.4318
<d>0.1429</d>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0.4318
<d>-0.3432</d>
<Offset>90</Offset>
</Frame>
</DHParameters>
<BasePose>0 -1 0 0 1 0 0 0 0 0 1 0.43 0 0 0 1</BasePose>
- <!-- +90 Z -->
<ToolPlatePose>0 -1 0 0 0.707107 0 .707107 -.047164 -.707107 0 .707107 .047164 0 0 0 1</ToolPlatePose>
 <ObstacleModel>
<Frame Name="Frame 0" />
 <Frame Name="Frame 1">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame1.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 2">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame2.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 3">

<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Frame3.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 4">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/CameraArm/Frame4A.STL</STLFile>
</Polytope>
</Primitives>
 <Children>
 <Node Name="Frame 4B">
<LocalXform>0 -1 0 0 0.707107 0 .707107 0 -.707107 0 .707107 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/CameraArm/Frame4B.STL</STLFile>
</Polytope>
</Primitives>
</Node>
</Children>
</Frame>
</ObstacleModel>
 <ConfigurationsOfInterest>
 <Configuration Name="TOOL-PARK">
<JointValue>0.8428 31.18 -62.36 -148.82</JointValue>
</Configuration>
</ConfigurationsOfInterest>
</Manipulator>
 <Manipulator Name="SRS Camera ECM">
 <DHParameters>
<FrameLocationMethod>Paul</FrameLocationMethod>
 <Frame>
<alpha>90</alpha>
<a>0
<d>0</d>
<Offset>90</Offset>
</Frame>
 <Frame>
<alpha>-90</alpha>
<a>0
<d>0</d>
<Offset>-90</Offset>
</Frame>
 <Frame>
<alpha>90</alpha>
<a>0
<theta>0</theta>
<Offset>-0.3822</Offset>
</Frame>
 <Frame>
<alpha>0</alpha>
<a>0
<d>0.3639</d>
</Frame>
</DHParameters>
<BasePose>0 1 0 0.6126 -1 0 0 0 0 0 1 0.1016 0 0 0 1</BasePose>
- <!-- -90 Z -->
<ToolPlatePose>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</ToolPlatePose>
 <ObstacleModel>
<Frame Name="Frame 0" />
 <Frame Name="Frame 1">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>

<STLFile>/SRS/CameraArm/Frame5.STL</STLFile>
</Polytope>
</Primitives>
 <Children>
 <Node Name="4BarCamA">
<LocalXform>1 0 0 0 0 0 1 0 0 -1 0 0.34036 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/CameraArm/4BarCamA.STL</STLFile>
</Polytope>
</Primitives>
</Node>
 <Node Name="4BarCamB">
<LocalXform>1 0 0 0.1042416 0 1 0 0.28642055 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/CameraArm/4BarCamB.STL</STLFile>
</Polytope>
</Primitives>
</Node>
</Children>
</Frame>
 <Frame Name="Frame 2">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/CameraArm/Frame7.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
 <Frame Name="Frame 3">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/CameraArm/CameraAndBoom.STL</STLFile>
</Polytope>
</Primitives>
</Frame>
<Frame Name="Frame 4" />
</ObstacleModel>
 <ConfigurationsOfInterest>
 <Configuration Name="TOOL-PARK">
<JointValue>0 -45 0 0</JointValue>
</Configuration>
</ConfigurationsOfInterest>
</Manipulator>
 <EnvironmentObstacleModel>
 <Node Name="PRS">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Box>
<XDimension>0.75</XDimension>
<YDimension>2.23</YDimension>
<ZDimension>0.79</ZDimension>
<Pose>1 0 0 0 0 1 0 0 0 0 1 -0.44 0 0 0 1</Pose>
</Box>
 <Box>
<XDimension>.64</XDimension>
<YDimension>1.84</YDimension>
<ZDimension>.24</ZDimension>
<Pose>1 0 0 0.05 0 1 0 -0.05 0 0 1 .11 0 0 0 1</Pose>
</Box>
 <Polytope>
<STLFile>/PRS/LSTAT.STL</STLFile>
</Polytope>
</Primitives>
 <Children>
 <Node Name="Gurney">

<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/PRS/Gurney.STL</STLFile>
</Polytope>
</Primitives>
</Node>
 <Node Name="Scanner">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/PRS/SurgeryScanner.STL</STLFile>
</Polytope>
</Primitives>
</Node>
 <Node Name="Patient">
<LocalXform>1 0 0 0.0 0 1 0 0.17881 0 0 1 0.09707 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/PRS/Body.STL</STLFile>
</Polytope>
</Primitives>
</Node>
</Children>
</Node>
 <Node Name="Floor">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 -0.015 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/PRS/Floor.STL</STLFile>
</Polytope>
</Primitives>
</Node>
 <Node Name="SDS">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Box>
<XDimension>1.03</XDimension>
<YDimension>0.63</YDimension>
<ZDimension>1.64</ZDimension>
<Pose>1 0 0 0.595 0 1 0 0.1 0 0 1 -0.26 0 0 0 1</Pose>
</Box>
 <Box>
<XDimension>0.59</XDimension>
<YDimension>1.05</YDimension>
<ZDimension>1.24</ZDimension>
<Pose>1 0 0 0.68 0 1 0 0.91 0 0 1 -0.455 0 0 0 1</Pose>
</Box>
 <Box>
<XDimension>0.06</XDimension>
<YDimension>0.144</YDimension>
<ZDimension>0.38</ZDimension>
<Pose>1 0 0 0.05 0 1 0 -0.004 0 0 1 -0.14 0 0 0 1</Pose>
</Box>
 <Box>
<XDimension>0.23</XDimension>
<YDimension>0.38</YDimension>
<ZDimension>0.38</ZDimension>
<Pose>1 0 0 -0.045 0 1 0 -0.004 0 0 1 -0.62 0 0 0 1</Pose>
</Box>
 <Polytope>
<STLFile>/SDS/SDS.STL</STLFile>
</Polytope>
</Primitives>
 <Children>
 <Node Name="Plating">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>

 <Polytope>
<STLFile>/SDS/Plating.STL</STLFile>
</Polytope>
</Primitives>
</Node>
 <Node Name="Slow Cache">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SDS/SlowCache.STL</STLFile>
</Polytope>
</Primitives>
</Node>
</Children>
</Node>
 <Node Name="TRS">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Cylisphere>
<Radius>0.35</Radius>
<Point>0 0 -0.605</Point>
<Point>0 0 -0.135</Point>
</Cylisphere>
 <Cylisphere>
<Radius>0.16</Radius>
<Point>0 0 -0.935</Point>
<Point>0 0 -1.335</Point>
</Cylisphere>
 <Polytope>
<STLFile>/TRS/TRSBase.STL</STLFile>
</Polytope>
</Primitives>
 <Children>
 <Node Name="TRS Spool">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/TRS/TRSSpool.STL</STLFile>
</Polytope>
</Primitives>
</Node>
</Children>
</Node>
 <Node Name="SRS-BASE">
<LocalXform>0 -1 0 2.2752 1 0 0 0 0 0 1 0.1684 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/Frame0.STL</STLFile>
</Polytope>
</Primitives>
</Node>
 <Node Name="SNS Base">
<LocalXform>-1 0 0 0 0 -1 0 0 0 0 1 1.035 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SNS/Frame0.STL</STLFile>
</Polytope>
</Primitives>
 <Children>
 <Node Name="SNS Pedestal">
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Box>
<XDimension>0.72</XDimension>
<YDimension>0.61</YDimension>
<ZDimension>0.72</ZDimension>
<Pose>1 0 0 0 0 1 0 0 0 0 1 -0.67 0 0 0 1</Pose>
</Box>

 <Polytope>
<STLFile>/SNS/SNSBasePedestal.STL</STLFile>
</Polytope>
</Primitives>
</Node>
</Children>
</Node>
</EnvironmentObstacleModel>
 <Tool Name="EE1 Gripper">
<ToolTipPose>-1 0 0 -0.0223 0 -0.941647 -0.336602 -0.08886 0 -0.336602 0.941647 0.20412 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="EE2 Gripper">
<ToolTipPose>-1 0 0 -0.0223 0 -0.941647 0.336602 0.08886 0 0.336602 0.941647 0.20412 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SRS Left Tool">
<ToolTipPose>1 0 0 -0.0352 0 1 0 0 0 0 1 0 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SRS Right Tool">
<ToolTipPose>1 0 0 -0.0352 0 1 0 0 0 0 1 0 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SRS-PSM-RC-TOOL">
<ToolTipPose>1 0 0 0 0 1 0 0 0 0 1 0.4318 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SNS EE1 Tool">
<ToolTipPose>0 0 -1 -0.0223 -.336602 .941647 0 -0.08886 .941647 .336602 0 0.20412 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SNS EE2 Tool">
<ToolTipPose>0 0 -1 -0.0223 .336602 .941647 0 0.08886 .941647 -.336602 0 0.20412 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SNS EE1 Tray">
<ToolTipPose>1 0 0 -0.0223 0 .941647 -.336602 -0.08886 0 .336602 .941647 0.20412 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SNS EE2 Tray">
<ToolTipPose>1 0 0 -0.0223 0 .941647 .336602 0.08886 0 -.336602 .941647 0.20412 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="Generic Tool">
<ToolTipPose>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</ToolTipPose>
 <ObstacleModel>
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SRS/ToolArms/Tool.STL</STLFile>
</Polytope>
</Primitives>
</ObstacleModel>
</Tool>
 <Tool Name="Generic Supply Tray">
<ToolTipPose>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</ToolTipPose>
 <ObstacleModel>
<LocalXform>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</LocalXform>
 <Primitives>
 <Polytope>
<STLFile>/SDS/SupplyTray.STL</STLFile>
</Polytope>
</Primitives>
</ObstacleModel>
</Tool>
 <Tool Name="TRS Tool Pose">
<ToolTipPose>-1 0 0 0.275789 0 1 0 0 0 0 -1 -0.0516 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SDS Pose 1">
<ToolTipPose>0 0 1 0.006429 0 -1 0 0 1 0 0 -.038608 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SDS Pose 2">
<ToolTipPose>0 0 1 0.006429 0 -1 0 0 1 0 0 -.0751205 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SDS Pose 3">
<ToolTipPose>0 0 1 0.006429 0 -1 0 0 1 0 0 -.111633 0 0 0 1</ToolTipPose>

</Tool>
 <Tool Name="SDS Pose 4">
<ToolTipPose>0 0 1 0.006429 0 -1 0 0 1 0 0 -.1481455 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SDS Pose 5">
<ToolTipPose>0 0 1 0.006429 0 -1 0 0 1 0 0 -.184658 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SDS Pose 6">
<ToolTipPose>0 0 1 0.006429 0 -1 0 0 1 0 0 -.2211705 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SDS Pose 7">
<ToolTipPose>0 0 1 0.006429 0 -1 0 0 1 0 0 -.257683 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SDS Pose 8">
<ToolTipPose>0 0 1 0.006429 0 -1 0 0 1 0 0 -.2941955 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="FC Tool Pose">
<ToolTipPose>0 0.7071 -.7071 0.13819 0 .7071 .7071 -0.13819 1 0 0 0.011 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="Left Camera">
<ToolTipPose>0 0 -1 -0.02454 -1 0 0 .04273 0 1 0 0.1185 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="Right Camera">
<ToolTipPose>0 0 -1 -0.02454 -1 0 0 -.04273 0 1 0 0.1185 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SRS Camera">
<ToolTipPose>1 0 0 0 0 0.5 -.866025 0 0 .866025 0.5 0.1 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="TRS Camera">
<ToolTipPose>-1 0 0 0.250508 0 -1 0 0.107944 0 0 1 0.0225 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SNS Left Camera">
<ToolTipPose>0 -.70711 .70711 .054449 .941647 -.23801 -.23801 -0.0953805 .336602 .665845 .665845 0.1778178 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SNS Right Camera">
<ToolTipPose>0 -.70711 .70711 .054449 .941647 .23801 .23801 0.0953805 -.336602 .665845 .665845 0.1778178 0 0 0 1</ToolTipPose>
</Tool>
 <Tool Name="SDS Camera">
<ToolTipPose>-1 0 0 -0.006607 0 -1 0 0.40708 0 0 1 -0.152115 0 0 0 1</ToolTipPose>
</Tool>
 <FramesOfInterest>
 <Frame Name="SNS-TRS-G">
<Pose>0 1 0 0 0 0 -1 -0.73 -1 0 0 1.325 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-TRS-A-1">
<Pose>0 1 0 0 0 0 -1 -0.63 -1 0 0 1.325 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-TRS-A-2">
<Pose>0 1 0 0 0 0 -1 -0.63 -1 0 0 1.37 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-TRS-A-3">
<Pose>0 1 0 0 0 0 -1 -0.73 -1 0 0 1.37 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-CAL-1-A">
<Pose>0 0 -1 -0.55 0 -1 0 0.5 -1 0 0 1.61 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-CAL-1-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.61 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-CAL-2-A">
<Pose>0 0 -1 -0.55 0 -1 0 0.5 -1 0 0 0.95 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-CAL-2-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 0.95 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-1-A">
<Pose>0 0 -1 -0.5 0 -1 0 0.5 -1 0 0 1.55 0 0 0 1</Pose>
</Frame>

 <Frame Name="SNS-SDS-1-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.55 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-2-A">
<Pose>0 0 -1 -0.5 0 -1 0 0.5 -1 0 0 1.49 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-2-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.49 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-3-A">
<Pose>0 0 -1 -0.5 0 -1 0 0.5 -1 0 0 1.43 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-3-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.43 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-4-A">
<Pose>0 0 -1 -0.5 0 -1 0 0.5 -1 0 0 1.37 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-4-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.37 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-5-A">
<Pose>0 0 -1 -0.5 0 -1 0 0.5 -1 0 0 1.31 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-5-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.31 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-6-A">
<Pose>0 0 -1 -0.5 0 -1 0 0.5 -1 0 0 1.25 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-6-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.25 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-7-A">
<Pose>0 0 -1 -0.5 0 -1 0 0.5 -1 0 0 1.19 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-7-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.19 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-8-A">
<Pose>0 0 -1 -0.5 0 -1 0 0.5 -1 0 0 1.13 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-8-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.13 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-9-A">
<Pose>0 0 -1 -0.5 0 -1 0 0.5 -1 0 0 1.07 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-9-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.07 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-10-A">
<Pose>0 0 -1 -0.5 0 -1 0 0.5 -1 0 0 1.01 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-10-G">
<Pose>0 0 -1 -0.65 0 -1 0 0.5 -1 0 0 1.01 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-W-A">
<Pose>0 0 -1 -0.42 0 -1 0 0.5 -1 0 0 0.92 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SDS-W-G">
<Pose>0 0 -1 -0.57 0 -1 0 0.5 -1 0 0 0.92 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-STZ-A">
<Pose>0 0 1 0.83 0 1 0 0.0 -1 0 0 1.08069 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-STZ-G">
<Pose>0 0 1 0.93 0 1 0 0.0 -1 0 0 1.08069 0 0 0 1</Pose>

</Frame>
 <Frame Name="SNS-TAS-L-A">
<Pose>0.224222 -0.0832619 0.970975 0.804999 -0.193817 0.97263 0.128161 0.168401 -0.955071 -0.216928 0.201947 1.54728 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-TAS-L-G">
<Pose>0.224222 -0.0832619 0.970975 0.902096 -0.193817 0.97263 0.128161 0.181217 -0.955071 -0.216928 0.201947 1.56747 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-TAS-R-A">
<Pose>0.224222 0.0832619 0.970975 0.804999 0.193817 0.97263 -0.128161 -0.168401 -0.955071 0.216928 0.201947 1.54728 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-TAS-R-G">
<Pose>0.224222 0.0832619 0.970975 0.902096 0.193817 0.97263 -0.128161 -0.181217 -0.955071 0.216928 0.201947 1.56747 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-TOOL-W">
<Pose>0 0 1 0.6 0 1 0 0 -1 0 0 1.62048 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-SUPP-W">
<Pose>0 -0.33660 0.94165 0.73 0 0.94165 0.33660 0.0 -1 0 0 1.08069 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-PRS-CAL-1-A">
<Pose>0 0 1 0.8 0 1 0 0.3 -1 0 0 0.920478 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-PRS-CAL-1-G">
<Pose>0 0 1 0.8 0 1 0 0.3 -1 0 0 0.820478 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-PRS-CAL-2-A">
<Pose>0 0 1 0.8 0 1 0 -0.3 -1 0 0 0.920478 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-PRS-CAL-2-G">
<Pose>0 0 1 0.8 0 1 0 -0.3 -1 0 0 0.820478 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-FC-CAL-A">
<Pose>0 -1 0 0.39326 0 0 1 0.49626 -1 0 0 1.07069 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-FC-CAL-G">
<Pose>0 -1 0 0.39326 0 0 1 0.59626 -1 0 0 1.07069 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-FC-A">
<Pose>0 -1 0 0.39326 0 0 1 0.44626 -1 0 0 1.08069 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-FC-G">
<Pose>0 -1 0 0.39326 0 0 1 0.59626 -1 0 0 1.08069 0 0 0 1</Pose>
</Frame>
 <Frame Name="WAYPOINT-1">
<Pose>0 -0.7071 -0.7071 0.0 0 -0.7071 0.7071 0.6 -1 0 0 1.3 0 0 0 1</Pose>
- <!-- <Pose>0 -0.94165 -0.3366 0.0 0 -0.3366 0.94165 0.6 -1 0 0 1.15 0 0 0 1 </Pose> -->
</Frame>
 <Frame Name="WAYPOINT-2">
<Pose>0 -1 0 0.4 0 0 1 0.5 -1 0 0 1.3 0 0 0 1</Pose>
</Frame>
 <Frame Name="WAYPOINT-3">
<Pose>0 -1 0 0.4 0 0 1 0.5 -1 0 0 1 0 0 0 1</Pose>
</Frame>
 <Frame Name="PRS-BASE">
<Pose>-1 0 0 1.1 0 -1 0 0 0 0 1 0.820478 0 0 0 1</Pose>
</Frame>
 <Frame Name="SDS-BASE">
<Pose>-1 0 0 -0.65 0 -1 0 0.5 0 0 1 1.61 0 0 0 1</Pose>
</Frame>
 <Frame Name="FC-BASE">
<Pose>0 1 0 0.66847 -1 0 0 1.01723 0 0 1 0.18126 0 0 0 1</Pose>
</Frame>
 <Frame Name="SNS-BASE">
<Pose>1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1</Pose>
</Frame>
 <Frame Name="TRS-BASE">
<Pose>0 -1 0 0 1 0 0 -1 0 0 1 1.38 0 0 0 1</Pose>
</Frame>

 <Frame Name="SRS-LEFT-PSM-BASE">
<Pose>-0.995168 0.0910389 -0.0367688 1.51548 -0.0925207 -0.994873 0.0408359 0.140142 -0.0328627 0.0440405 0.998489 1.02576 0 0 0
1</Pose>
</Frame>
 <Frame Name="SRS-RIGHT-PSM-BASE">
<Pose>-0.995168 -0.0910389 -0.0367688 1.51548 0.0925207 -0.994873 -0.0408359 -0.140142 -0.0328627 -0.0440405 0.998489 1.02576 0 0 0
1</Pose>
</Frame>
 <Frame Name="SRS-ECM-BASE">
<Pose>-0.707107 0 -0.707107 1.49392 0 -1 0 0 -0.707107 0 0.707107 1.70466 0 0 0 1</Pose>
</Frame>
 <Frame Name="SRS-ECM-RC">
<Pose>-0.707107 0 -0.707107 1.49392 0 -1 0 0 -0.707107 0 0.707107 1.68466 0 0 0 1</Pose>
</Frame>
 <Frame Name="SRS-LEFT-PSM-RC">
<Pose>0.970975 0.0832619 0.224222 1.02583 0.128161 -0.97263 -0.193817 0.101363 0.201947 0.216928 -0.955071 1.16194 0 0 0 1</Pose>
</Frame>
 <Frame Name="SRS-RIGHT-PSM-RC">
<Pose>0.970975 -0.0832619 0.224222 1.02583 -0.128161 -0.97263 0.193817 -0.101363 0.201947 -0.216928 -0.955071 1.16194 0 0 0 1</Pose>
</Frame>
 <Frame Name="SURGICAL-SITE">
<Pose>-0.995168 0.0910389 -0.0367688 1.51548 -0.0925207 -0.994873 0.0408359 0.140142 -0.0328627 0.0440405 0.998489 1.02576 0 0 0
1</Pose>
</Frame>
</FramesOfInterest>
</rrgOSCAR:Workcell>

Appendix E: OSCAR Specifications for Trauma Pod
February 1, 2005

I. Introduction
Operational Software Components for Advanced Robotics (OSCAR) is an object-oriented framework for
the development of control programs for robotic manipulators. OSCAR is developed in C++ and is
independent of the application software architecture. A detailed overview and relevant publications can
be found here. OSCAR has been used by developers at the Univ. of Texas, ORNL, NASA/Ames, and
NASA/JSC. RRGKinematix, a single software library built upon OSCAR that performs generalized
kinematics and collision detection for serial chain robots, has been accessed by over 500 users. OSCAR is
compatible with Windows and Linux platforms and has been compiled using Visual Studio 6.0, .NET,
and GNU C++ (a.k.a. g++) compilers. There are some platform dependent hardware interfacing
components in OSCAR, primarily due to lack of platform independent device drivers.

The remainder of this document introduces OSCAR components relevant to the trauma pod Project;
specifically the operation and control of the Surgical Nurse Subsystem (SNS). Although OSCAR is well
documented on the web, this document directs the reader to material deemed most critical to this project.
It contains:

• a general overview of OSCAR,
• a review of OSCAR domains relevant to this project including component functionality,

interfaces, and usage,
• a list of resources for developers,
• a listing of components or functionality that must be added to OSCAR during this project, and
• appendices that contain

o an example application for the SNS,
o an example control block diagram illustrating a typical robot control system as developed

using OSCAR components, and
o a list of robot modeling parameters that OSCAR can use for control, modeling and

optimizing the operation of the Mitsubishi PA10.

II. OSCAR Relevant Domains
A summary of OSCAR domains can be found here and the software implementation is documented here.
Using the example control system block diagram in the appendix, relevant OSCAR modules are
identified.

• Support Domains
o OSCAR contains numerous support domains to handle mathematical operations

(Math6), communications (Communications), File I/O (FileData), error checking
(Base::OSCARError), etc.

• Forward Kinematics

6 The OSCAR Reference Pages are constantly updated. Therefore, pages for specific links or methods cannot be
provided in this paper. Instead, all references are written to direct the reader from the main module page to the
relevant library and class. For example, (Math) directs the reader to the Math module on this page and
ForwardKinematics::FKPosition directs the reader to the class RRFKPosition in the ForwardKinematics module.
OSCAR class names are preceded by RR to avoid namespace pollution. The ‘RR’ is removed from this
documentation for readability.

o ForwardKinematics::FKPosition – Generalized solution for the location of a tool
tip, global and local joint transformations (Math::Xform using DH parameters
(FileData::DHData or FileData::XMLDHData). (see Appendix E.2 for a sample
file format).

o Other generalized advanced forward kinematic functionality:
 ForwardKinematics::FKJacobian, FKVelocity, and FKAcceleration

o ForwardKinematics::FKPositionMitsubishi – Efficiently calculates the tool point
for the Mitsubishi PA-10 manipulator. Allows both the base pose and the tool tip
location relative to the last plane to be modified. This is a closed form solution.

o ForwardKinematics::FKJacobianMitsubishi – Jacobian determination customized
for the Mitsubishi PA-10 for computation performance. This is a closed form
solution.

• Inverse Kinematics
o OSCAR contains generalized InverseKinematics to determine Joint Positions

(::IKPosition), and velocities (::IKVelocity) for a desired tool motion.
o Closed form inverse kinematic solutions also exist for many robots including the

Mitsubishi PA-10 (::IKMitsubishi).
• Redundancy Resolution Techniques (RRT)

o In addition to the methods shown above, OSCAR can resolve redundancies and
improve performance defined by a large and varied set of performance criteria.

o InverseKinematics::IKJGenerateOptions – Generate set of kinematically valid joint
configurations for desired EEF Position

o PerformanceCriteria::PerformanceCriteria7 – Metrics used to compare the
generated joint configurations. Some example criteria relevant to this effort are:

 PerformanceCriteria::JointRangeAvailability – That monitors the joint
state relative to joint limits. Limit criteria also exist for velocity,
acceleration, and torque. Limit criteria take use exponential curve
formulations and critical boundaries to avoid underutilization of the work
space.

 PerformanceCriteria::SingularityAvoidance – Avoid configurations where
the Jacobian has no inverse.

 PerformanceCriteria::ConservativeMotion – Avoid problems associated
with joint drift in the workspace.

 PerformanceCriteria::GeneralizedStiffness – minimize compliance at the
EE.

 PerformanceCriteria::Fusion – A weighted set of other criteria.
 and Over 20 others implemented.

o PerformanceCriteria::Repository – Store data generated by criteria in order to
avoid repeating calculations. Implements a blackboard architecture for criteria
computations.

• Obstacle Avoidance/Collision Checking
o An ObstacleAvoidance::Obstacle (both manipulators and workspace) is modeled

from primitives using formatted text files or XML File Data.
o Collision Detection is performed by determining the Smallest Minimum Distance

(ObstacleAvoidance::PCSmallestMinDist) in a between obstacles defined in a
Robotic Work Cell (ObstacleAvoidance::Workcell) object.

o Obstacle Avoidance is performed using the RRTs discussed earlier and
Performance Criteria such as, PCSmallestMinDist, PCAverageDistReciprocal,

7 Criteria are traditionally categorized into performance criteria and obstacle avoidance criteria in OSCAR.

and PCDistToForce criteria that determine virtual forces between obstacles and
move the robot away from such obstacles via self motion.

• Path Planning
o MotionPlanning::MotionPlanning – Generating EE Paths between desired

locations in either joint space or EE space. For example,
o Path Blending (::PathBlend) – Generates constant velocity paths for a set of points.
o 5th order Polynomial Curves (::FifthOrderPoly) – for smooth trajectories from

based on the initial and final conditions for position, velocity, and acceleration.
• Hardware Interfaces8

o Device::RobotServoInterface – Abstract interface for sending appropriate OSCAR
joint command (positions, velocities, currents or torques) to a robot’s joint
servomotors. Includes optional limit checking.

 RobotServoInterface::RoboworksInterface – Example interface to
graphical simulation.

o Device::Tool – Interfacing for abstract grippers and tools..
o Device::Sensor – Base class for all Sensors

 Sensor::ATISensor – Interface to an ATI Force/Torque Sensor that uses
the serial port.9

III. Developer Resources

• RRG Points of Contact
o Dr. Mitch Pryor mpryor@mail.utexas.edu (512) 471-5182
o Dr. Chetan Kapoor chetan@mail.utexas.edu (512) 471-7098
o Mr. Ed Jung ed.jung@mail.utexas.edu (512) 471-6930
o Dr. Chalongrath Pholsiri longrath@mail.utexas.edu (512) 471-6930

• OSCAR Intranet Resources
o Intranet resources will require you to have an account on the OSCAR server.

Developers can get an account by contacting Mitch Pryor.
o Concurrent Version Systems (CVS) is used with OSCAR at the University of

Texas. There are tutorials and implementation instructions for using CVS on the
RRG Intranet.

o An active Developer’s Forum is also available on the RRG Intranet.
• 3rd Party Libraries used by OSCAR

o These libraries are embedded in OSCAR and therefore their API is not a burden on
application developers, but the libraries must be available for certain methods to be
fully functional.

o MATLAB C++ Libraries – Some higher level mathematical operations such as
Singular Value Decomposition (SVD) employ MATLAB C++ Libraries. For this
project, these operations will not be used and OSCAR math libraries are compiled
in versions with and without these MATLAB based methods.

o Xerces Libraries – These libraries are used for platform independent parsing,
generating, and manipulating XML data. Classes handling data in OSCAR will
use the open-source Xerces to guarantee platform independence.

8 The Device library in OSCAR is primarily an abstract set of classes with a few hardware interfaces currently
implemented that are required used in the RRG laboratories.
9 This implementation of the ATI sensor is for an older serial bus sensor which will probably not contribute directly
to the trauma pod effort. This class can be modified to use a data acquisition card for this project.

o ACE Libraries – These libraries are used to provide “developing high-
performance, distributed real-time and embedded systems.” It is open-source and
platform independent and its primary use in OSCAR is for error logging and
multithreaded support. If you are using single threaded OSCAR, ACE will not be
required.

IV. Computational Performance Benchmarking
These control rates are based on OSCAR running on AMD Athlon-M 2400+ CPU with 512 MB of RAM
running Windows XP. All programs were single threaded with no parallelism. Here are the speeds of
calculations for some major OSCAR components. The robot geometry used was the Mitsubishi PA10.

• Forward kinematics
o Position (Only EE location determined)

• Closed-form ~ 350 KHz
• Generalized ~ 95 KHz

o Position and Jacobian (Both EE location and current Jacobian determined)
• Closed-form ~ 140 KHz
• Generalized ~ 70 KHz

• Inverse kinematics
o Closed-form Position ~ 190 KHz
o Resolved-rate with these parameter values

• 1 mm increment steps at the EE
• 0.01 mm error and 1000 rotation scale (default values)10
• IKJacobian using FKJacobian ~ 37 KHz (generalized method)
• IKJacobian using FKJacobianMitsubishi ~ 39 KHz11 (customized method)

• Distance calculations
o Mitsubishi robot is modeled with 6 cylispheres (no self-collision).

• Envi. with 6 cyl., 3 spheres, and 1 plane (10 total) ~ 5900 Hz
• Envi. with 12 cyl., 6 spheres, and 2 plane (20 total) ~ 3400 Hz
• Envi. with 5 cyl. ~ 12-13 KHz

Overall performance: Here is a typical scenario where the robot is instructed to follow a certain path and
we use redundancy resolution with 3 criteria to solve the inverse kinematics problem.

• Kinematics component used
o FKJacobian
o IKJReconfig
o IKJGenerateOptions

• OA and criteria
o JRA - Avoid physical travel limits of the joints
o Smallest Minimum Distance – makes sure there are no collisions.
o Average Distance Reciprocal – does obstacle avoidance using redundancy.

• Models
o PA10 - 6 cylispheres

10 OSCAR Inverse Kinematics uses an allowable tolerance error to determine when a successful iterative inverse
solution has been found. The tolerable error is defined as a Cartesian error and scaling from the Cartesian error for
the rotational values. In this case, the computational kinematics are determining solutions more accurate than most
joint servo controllers can follow.
11 The geometry of the PA10 was analyzed and any mathematical short cuts to the generalized solution were
implemented in a derived class.

o Obstacles - 4 cylispheres, 3 spheres, and 1 plane
• Perturbation type: Simple (15 options)12

o 270 Hz
o 230 Hz including simple motion planning

From this preliminary analysis, it is clear that the operational components of OSCAR is expected to meet
the necessary control rates anticipated in the trauma pod cell. These numbers are preliminary since the
code was a ‘bare bone’ operational application that will need to be considered as a component in the
hardware control system. The performance of these components will also increase as they are further
customized for SNS use.

V. Future OSCAR Components
It is already recognized that additional functionality will need to be added to OSCAR in order to meet the
requirements for the Phase I demonstrations. This listing is for the operational components of OSCAR
and does not consider hardware implementations or code associated with other software components such
as the Supervisory Controller.

• A global path planner
• Real-time trajectory generation
• Multi-thread safe libraries

o Integration with the ACE Framework.
• Polyhedral Obstacle Modeling

12 RRIKGenerateOptions Method generated 15 discreet solutions for the EE location that could be compared in
each cycle in terms of the selected criteria.

E.I. Sample Programs

An Online OSCAR Tutorial walks new OSCAR developers through its foundation classes (i.e. Math,
FileData, etc.), Kinematics, Motion Planning, Dynamics, and Redundancy Resolution.

The following example program demonstrates the kinematic operation of the Mitsubishi PA10 using the
closed-form inverse kinematic object.

//
// File Name: main.cpp
//
// This program was used compare cycle rates of the
// closed form inverse kinematics of the Mitsubishi
// PA-10.
//
#include "ForwardKinematics\FKPositionMitsubishiPA-10.h"
#include "ForwardKinematics\FKJacobian.h"
#include "InverseKinematics\IKMitsubishiPA-10.h"
#include "InverseKinematics\IKJacobian.h"
#include "FileData\ManipulatorData.h"
#include "Base\Timer.h"

using namespace OSCAR::FileData;
using namespace std;
int main()
{
 // Create an OSCAR error object for error checking in program
 RROSCARError err(noError);

 // Collect the XML schemas and robot parameter data
 err = XMLData::SetSchemaFile(RRString("\\\\server\\... \\Schemas\\ModelTypes.xsd"));
 if(err != noError){
 DisplayError(err);
 return 0;
 }
 ManipulatorData pa10Data(RRString("MitsubishiPA7C-ManipulatorModel.xml"), err);
 if(err != noError){
 DisplayError(err);
 return 0;
 }
 if(!pa10Data.LoadData()){
 DisplayError(pa10Data.GetError());
 return 0;
 }
 const XMLDHData* pa10DH = pa10Data.GetDHParameters();

 // Create joint vectors of the correct length.
 RRJointVector initialJoints(pa10DH->GetDOF()), invSolution(pa10DH->GetDOF());
 initialJoints[0] = 0.0; initialJoints[1] = 45.0; initialJoints[2] = 0.0;
 initialJoints[3] = 45.0; initialJoints[4] = 0.0; initialJoints[5] = 45.0;
 initialJoints[6] = 0.0;
 initialJoints *= DegToRad; //All OSCAR calculations use radians.

 // Create the forward kinematics object using the XML Data

 RRFKPositionMitsubishi fk(*pa10DH, err);
 if(err != noError){
 DisplayError(err);
 return 0;
 }

 // Determine the initial tool location
 RRXform hand = *fk.GetHandPose(initialJoints);

 RRIKMitsubishi ik(*pa10DH, err);
 if(err != noError){
 DisplayError(err);
 return 0;
 }

 bool retVal; // used to determine the success of the IK Object
 RRTimer clock;
 unsigned int cycles = 1500; //# of steps in the path
 unsigned int loops = 10; //# of times path is repeated

 // Begin moving tool tip along a simple path.
 clock.Start();
 for(unsigned int j = 0; j < loops; j++){
 for(unsigned int i = 0; i < cycles; i++){
 retVal = ik.GetJointPosition(hand, invSolution);
 if(!retVal)
 DisplayError(ik.GetError());

 hand.at(0,3) -= 1.0; // decrement X by 1 mm
 }
 for(i = 0; i < cycles; i++){
 retVal = ik.GetJointPosition(hand, invSolution);
 if(!retVal)
 DisplayError(ik.GetError());

 hand.at(0,3) += 1.0; // increment X by 1 mm
 }
 } //end of for(unsigned int j = 0; j < loops; j++)
 clock.Stop();

 cout << "IK Frequency = ";
 cout << (2*loops*cycles)/clock.ElapsedTime() << endl;
 return 0;
}

E.II. Manipulator Data for PA-10. Sample XML File
Input to OSCAR components is primarily through formatted text data and lately through XML. XML is
used to specify manipulator geometry (see below), obstacle models, tool models, workcell configurations
(location of key devices), etc. The XML format is based on well defined schemas (xsd) that is used to
check the correctness of the data provided. Example below shows the PA-10 kinematic model.

<rrgOSCAR:ManipulatorModel xmlns:rrgOSCAR="http://www.robotics.utexas.edu"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Name>Mitsubishi Pa-10 C</Name>
<DHParameters>

<FrameLocationMethod>Paul</FrameLocationMethod>
<Row>

<alpha>0</alpha>
<a>0
<d>0</d>
<MinLimit>-177</MinLimit>
<MaxLimit>177</MaxLimit>

</Row>
<Row>

<alpha>-90</alpha>
<a>0
<d>0</d>
<MinLimit>-94</MinLimit>
<MaxLimit>94</MaxLimit>

</Row>
<Row>

<alpha>90</alpha>
<a>0
<d>450</d>
<MinLimit>-174</MinLimit>
<MaxLimit>174</MaxLimit>

</Row>
<Row>

<alpha>-90</alpha>
<a>0
<d>0</d>
<MinLimit>-137</MinLimit>
<MaxLimit>137</MaxLimit>

</Row>
<Row>

<alpha>90</alpha>
<a>0
<d>480</d>
<MinLimit>-255</MinLimit>
<MaxLimit>255</MaxLimit>
</Row>

<Row>
<alpha>-90</alpha>
<a>0
<d>0</d>
<MinLimit>-165</MinLimit>
<MaxLimit>165</MaxLimit>

</Row>
<Row>

<alpha>90</alpha>
<a>0
<d>0</d>
<MinLimit>-255</MinLimit>
<MaxLimit>255</MaxLimit>

</Row>
</DHParameters>
<BasePose>1 0 0 -5 0 1 0 12 0 0 1 10 0 0 0 1</BasePose>
<ToolPlatePose>1 0 0 0 0 1 0 0 0 0 1 5 0 0 0 1</ToolPlatePose>

 </rrgOSCAR:ManipulatorModel>

E.III. Example Control System Block Diagram

Joint Level Motion Planning
- Interp. Between Set Points

Joint Servo Interface (Calls into
Robot’s API)

- Get/SetPosition

Limits Checking Module
- Position, Vel, Acc. Limits

Kinemtics
- FK and IK

Force Control Module
- Feedback Control
- Sensor IO

Redundancy Resolution
- OA Movements
- Limits/Singularity Avoidance
- Maximize EEF Velocity

Path Planner
- Obstacle Free Paths
- Point to Point Moves
- Move Through Points Move
- Delta Moves

Task Level Interface
- Change Tool
- Get Supply
- Home
- Reset, etc.

Modeling and Artifical Pot. Field
- Obstacle Model
- Minimum Distances
- Average Minimum Distances
- Artificial Joint Torques
- EE Forces and Motions

Real-time Data Store
- Location & Size of All Obstacles
- Updated as Obstacles Move
- Other sensor data sources…

(this data store can be distributed in case
of a mult-robot application)

Po
st

 R
ob

ot
 M

od
el

G
et

 E
nv

 M
od

el

Subsystem 1
(gripper)

Subsystem n
(tool rack)

…

Workcell
Controller Vision Robot1 Pos Device1 Pos

• Blocks with Solid lines reside on the robot controller. Only exception being the Real-Time Data Store that
may reside on the network for a truly scalable application where multiple robots need to perform OA.

• Force Control Module also reads a force/torque sensor (not shown) and may perform averaging of force
data to reduce noise. It can also be run asynchronously from the main control loop.

E.IV. Manipulator Parameters Required/Desired by OSCAR

The table below shows the parameters that are required/desired and the impact capability that can
be provided in the software based on their availability. Accurate knowledge of some these parameters
will be critical to the success of the Phase I demonstrations. The desired parameters (based on their
accuracy) can be used to further optimize the manipulator motion w.r.t. to its torque limits and accuracy.

Parameters Controller Capability

Kinematic Parameters (required)
 Dimensions
 Axis locations/directions
 Zero Position for axes
 Position, Velocity, Acceleration
 Travel Limits
 Joint Position
Resolution/Accuracy

- Forward and Inverse position and velocity
capability

- Avoiding limits, maximizing speed
- Redundancy resolution
- Collision detection, obstacle avoidance

Dynamic Parameters (desired)
 Part Inertias
 Center of Mass Locations for
 each part
 Mass of each part
 Torque limits
 Joint Stiffness

- Optimizing motions w.r.t. torques
- Minimizing inertia loads, leading to

lower vibrations and shocks
- Improved accuracy due to deflection

modeling

Friction Properties (desired)

- Optimizing motions w.r.t. torques as
friction can account for 15% of torques

Details of these and specifics on how these parameters should be specified are presented on the following
pages.

Kinematic Properties
Based on available drawings (see below), we have already figured out the dimensions and DH parameters. The DH
frame assignment has also been done (see below):

Frames for setting DH Parameters for the PA-10 Robot

Z2 Y0, 1

X 3, 4 Z4 Y3

X 5, 6, 7 Z6 Y5, 7

Z1, 0

X0, 1, 2

Z3

Z5, 7

Y6

Y4

Y2

Link Alpha(i-1) A(i-1) d(i-1) Theta(i-1)
1 0 0 0 Var
2 -90 0 0 Var
3 90 0 450 Var
4 -90 0 0 Var
5 90 0 480 Var
6 -90 0 0 Var
7 90 0 0 Var

 Dimensions are in mm and angles in degrees

BasePose w.r.t. to the mounting plate of the robot is at 317 mm. The tool plate pose w.r.t the last DH frame (at the
wrist) is 70 mm.

Position Travel Limits (degrees) - these are software limits as specified by ORNL
Joint 1 = +,- 177
Joint 2 = +,- 94
Joint 3 = +,- 174
Joint 4 = +,- 137
Joint 5 = +,- 255
Joint 6 = +,- 165
Joint 7 = +,- 255

Joint Position Resolution and Accuracy (degrees)

Velocity Limits
Joint 1 = 1.4 rad/sec
Joint 2 = 1.4 rad/sec
Joint 3 = 2.25 rad/sec
Joint 4 = 2.25 rad/sec
Joint 5 = 6.28 rad/sec
Joint 6 = 6.28 rad/sec
Joint 7 = 6.28 rad/sec

Acceleration Limits
Joint 1 = 7 rad/sec-sec
Joint 2 = 5 rad/sec-sec
Joint 3 = 10 rad/sec-sec
Joint 4 = 7.5 rad/sec-sec
Joint 5 = 68 rad/sec-sec
Joint 6 = 36 rad/sec-sec
Joint 7 = 40 rad/sec-sec

Operational Offsets

- Often the operational zero location for each joint is different that dictated by the DH Parameters. The
can be caused by either the arbitrary orientation of some DH frames or the zero position from the
encoder was selected to put the robot into a more compact or safer configuration. If the zero position
of the manipulator is offset from the zero position derived from the DH parameters, this information
will also be needed.

Dynamic Parameters
We have broken the PA-10 into various parts and would like the mass of each part, the location of the C.G. of each
part w.r.t. the specified frame, and the inertia of each part about the C.G. for that part. The C.G. location can be

expressed as vector pointing from the origin of the specified frame to the C.G. Please specify in S.I. units. Below, I
represents the inertia matrix and r represents the vector from the specified frame to the C.G.

1

xx xy xz x

xy yy xx y

xz xz zz z

I I I r
I I I r
I I I r

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1I r

The part above in frame 1

2 2

xx xy xz x

xy yy xx y

xz xz zz z

I I I r
I I I r
I I I r

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I r

The part above in frame 2

The part above in frame 3

3 3

xx xy xz x

xy yy xx y

xz xz zz z

I I I r
I I I r
I I I r

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I r

The part above in frame 4

4 4

xx xy xz x

xy yy xx y

xz xz zz z

I I I r
I I I r
I I I r

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I r

The part above in frame 5

5 5

xx xy xz x

xy yy xx y

xz xz zz z

I I I r
I I I r
I I I r

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I r

The part above in frame 6

6 6

xx xy xz x

xy yy xx y

xz xz zz z

I I I r
I I I r
I I I r

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I r

The part above in frame 7

7 7

xx xy xz x

xy yy xx y

xz xz zz z

I I I r
I I I r
I I I r

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

I r

Friction Model:
It would also be nice to have a friction model of the robot if possible, as friction can account for up to 15% of the
torques. So, for fully optimized motions, this may be necessary. A method we are aware of for getting the friction
model uses least squares estimation techniques.

A commonly used model when using least squares estimation is:

()j cj j vj jf f sign fθ θ= +

Where jf is the total friction torque for joint j, cjf is the Coulomb friction constant for joint j and jf is the
viscous friction constant for joint j.

Appendix F: Task Planning Techniques for Trauma Pod

Author: Shilpa Gulati

INTRODUCTION
Robot assisted surgery has helped reduce patient trauma and recovery time due to increased precision of surgical
robot systems compared to humans [1, 2]. In general, a robot assisted surgery cell consists of a tele-operated surgical
robot that performs the surgery. The support functions like handing over the surgical instruments to the surgical
robot, monitoring the patient etc. are carried out by trained humans such as nurses. Attempts are being made to
automate the support functions in robot assisted surgery in view of the demonstrated effectiveness of robotic systems
and their ability to extend the surgeon’s capabilities [1, 3]. Various factors need to be considered for full automation
of the support functions. An important consideration is Task Planning, that is, the ability to convert the surgeon’s
high level commands into appropriate actions of the support devices [4, 5].

Many techniques have been proposed for automated task planning. An important subset of these techniques
is classical task planning. Literature survey and analysis shows that classical task planning techniques are not
adequate for automated task planning of fully automated support functions in a tele-robotic surgery cell.

BACKGROUND

Definitions of key terms
World: World is the system of interest [6].
Examples: Chess board during a chess game, automated surgery cell.

State: A state is a condition of the world where certain properties hold true. These properties are uniquely
determined at any given instant of time [7]. Thus, state is a snapshot of the world at a given time.
Examples: The location of all pieces on a chess board at a give instant represents its state completely at that instant.
For an automated surgery cell the properties of its inhabitants (humans and mechanical systems) represent its state.

Action: An action is an intentional event that changes the state of the system [7]. An action is performed by the
inhabitants of the world and transforms one state into another.
• Primitive Action: A primitive action is one that cannot be further broken down into other actions [6]. In theory,

we can break down an action into smaller actions endlessly. In practice, we define a certain action as primitive
when that action can be completely performed by an inhabitant at a single command.
Examples: Moving a pawn from one square to another in a game of chess is a primitive action. For an automated
surgery cell, we can define a primitive action as the movement of surgical robot from one orientation to the
other.

• Compound Action: A compound action is one that can be further decomposed into other actions [6]. An
inhabitant cannot perform a compound action directly. This action must be broken down into primitive actions
before it can be performed. When a compound action is decomposed it results in a sequence of primitive and/or
compound actions [6] called decomposition sequence or simply decomposition. There might be more than one
decomposition sequence for a compound action because there may be more than one way of accomplishing the
same task.
Example: (a) Surrounding the queen in a game of chess is a compound action. It may involve moving multiple
pieces in a particular sequence. There may be many sequences that will attain the same result. (b) For an
automated surgery cell, a compound action can consist of a sequence: (1) Nurse: pick up scissors (2) Surgical
robot: lock end-effector such that force in direction s produces only a small deflection (3) Nurse: Slide scissors
in surgical robot’s end-effector in direction s.

Deterministic vs. Non-deterministic world: A deterministic world is one in which the next state is completely
determined by the present state and the action taken. A non-deterministic world is one in which it is not possible to
know the next state exactly even if the current state and the action taken are known [6].

Example: (a) A chess board is a deterministic world. Given current location of all pieces, and knowing that a pawn
(say) is moved, the resulting state is completely known. (b) Automated surgery cell containing one surgical robot is a
non-deterministic world because of the inaccuracy inherent in the robot. For example, if the robot is moved from
point A to point B, it does not end up exactly at point B. Thus, even though we knew the initial state (robot at point
A) and the action we commanded (Move robot from A to B) we cannot predict the exact state after the action (robot
is near B with some error e).

Task Planner
A task planner takes a high level task description as input and produces a sequence of lower level of actions or a
plan as output [6]. The schematic of a task planner is shown in Figure 1.

 Figure 1: Schematic of a Task Planner.

A task planner consists of:
1. Planning Algorithm: A planning algorithm is a

general reasoning procedure that is designed to
work for any environment that satisfies certain
properties.

2. Domain Model: This contains domain specific
knowledge that is pre-stored by the designer. It
maybe possible to augment the domain model
during plan generation.

A general planning algorithm can use the domain model to generate plans particular to that domain. There could be
multiple planning algorithms that work for a given environment. The domain model could also be in various forms.
For example, in an automated surgery cell, the domain model could consist of all possible features and actions of the
devices of the surgery cell. Then a planning algorithm could combine suitable actions in a logical manner to form a
plan.

Classical Task Planning
A planning algorithm is designed based on certain assumptions about the kind of world it can work in. Classical
Task Planning refers to the subset of planning algorithms that work in a deterministic world [6].

Classical Task Planning algorithms are further divided into two categories depending on the kind of domain
model they use [8] and are summarized in Table 1.

Planning

Algorithm
Input to the
algorithm

Domain Model Adding new knowledge to
domain model

Primitive
Action (PA)

Initial and
Final State

All possible primitive actions of the
devices.

Add new primitive actions

Knowledge
Based (KB)

Initial State
and Goal
State

1. All possible primitive actions of the
devices.
2. A repository of compound actions and
their decompositions.
3. A list of criteria for selecting a
particular decomposition for a
compound action.
4. Other rules such as time and resource
constraints.

1. Add new primitive actions.
2. Add new compound actions
3. Add new criteria for selecting
decompositions of compound
actions.
4. Add new rules.

Table 1: Summary of the PA and KB planning techniques

Both PA and KB algorithms take an initial state and a final state as input, and then use the knowledge stored in the
domain model to find a sequence of actions or “path” that leads from the initial state to the goal state [6]. An
example input is shown in Figure 2.

Planning Algorithm
(General)

Domain Model
(Domain Specific)

Sequence of
Actions (Plan)

INPUT OUTPUT

TASK PLANNER

High Level Task
Description

Task: Insert scissors in surgical robot’s end-effector
Initial State: Surgical robot’s end-effector is empty AND Nurse has scissors
Goal State: Surgeon robot’s end-effector has scissors AND Nurse does not have scissors

 Figure 2: A sample input to the planning algorithms

As seen from Table 1, the essential difference between PA and KB techniques is the kind of knowledge in their
domain model. While PA algorithms use a domain model consisting only of primitive actions, KB algorithms use a
domain model consisting of primitive and compound actions, criteria for selecting the decompositions of compound
actions and other rules [8].

THE REPRESENTATIVE SURGERY CELL
The representative surgery cell is chosen to perform minimally invasive surgery since it is one of the most widely
performed types of robot-assisted surgery [1, 2, 5].The surgery is performed by a human from a remote location with
a tele-operated robot. The support functions are fully automated and no human is present at the surgery site. The cell
consists of various subsystems that are controlled either directly by the surgeon or by a central computer called
supervisor. The commands issued by the surgeon are processed by a planner that breaks the commands into
subsystem level actions. The supervisor then commands the subsystems to execute those actions.

The subsystems in the cell are (Fig 3):
Surgical Robot: The surgeon robot consists of
three arms with one end-effector each. Surgical
tools are mounted on two of the arms. The third
arm carries a camera.
Nurse Robot: This is a 7 DOF robot with one
gripper and performs the function of handing
over surgical tools and supplies to the surgical
robot.
Tool Rack: The tool rack holds the sterile tools
(like scissors, forceps etc.) needed for surgery.
Its function is to present the appropriate surgical
tool to the nurse robot.
Supply Dispenser: The supply dispenser places
the appropriate surgical supplies (like swabs) in
a supply tray and presents the tray to the nurse
robot.

Figure 3: The representative surgery cell.

 A small subset of the domain model of the representative surgery cell for PA and KB planning techniques is
shown in Table 2. In particular, note the compound action “Place new tool in surgical robot’s end-effector” in KB
domain model. There are two ways of achieving the same result. In the first, the nurse robot moves through an
intermediate point in such a way that the Torque Limit Avoidance criterion, TLA → 0. This means that torque in
every joint is much less than the maximum allowable actuator torque. Details of this criterion13 can be found in [9].
In the second, the nurse robot moves directly to the surgical robot’s end-effector and at least one joint torque
approaches its maximum allowable torque, that is, TLA → 1. The first sequence is safer (because we are operating

13 Many other criteria could be used to extend the KB domain model. For example, we could use system level
criteria [9] such as Velocity Limit Avoidance, Joint Range Availability, Force Transmission Ratio, Effective EEF
stiffness; obstacle avoidance criteria such as Smallest Minimum Distance and Average Minimum Reciprocal
Distance; actuator level criteria relating to torque, speed, precision, noise etc. (under development at Robotics
Research Group) etc. to enhance KB planners.

all actuators within safe torque limits), but the second is faster (because it does not have an intermediate point). The
planning algorithm or the surgeon has the choice of selecting one of these depending on the requirements of the
surgery.
Planning
technique

Domain Model

PA
planning

Primitive actions
1 Nurse Robot: Move from point X to point Y.
2 Nurse Robot: Orient and lock tool in surgical robot’s end-effector.
3. Surgical Robot: Make an incision in patient at point (x, y, z)

KB
planning

Primitive actions
Same as PA planning.
Compound actions and criteria
Place new tool in surgical robot’s end-effector
Decomposition Sequence 1: TLA→ 0. Safer but slower of the two.

1. Nurse Robot: Move from current position to intermediate point A.
2. Nurse Robot: Move from point A to surgical robot’s end-effector.
3. Nurse Robot: Orient and lock tool in surgical robot’s end-effector.

Decomposition Sequence 2: TLA→ 1. Faster of the two but less safe.
1. Nurse Robot: Move from current position to surgical robot’s end-effector.
2. Nurse Robot: Orient and lock tool in surgical robot’s end-effector.

Additional rules or heuristics
1. Do not add any action to a plan that takes more than 20 seconds to execute.
2. Do not add any action to a plan that results in collisions.
3. If the patient’s weight is less than 250 lbs the incision point should be at location (x, y, z) on
the body otherwise it should be at location (u, v, w).

TABLE 2: PARTIAL PA AND KB DOMAIN MODEL OF THE REPRESENTATIVE SURGERY CELL.

ANALYSIS
In this section, we analyze the requirements of a task planner for fully automated support functions and then evaluate
the two classical planning techniques against the requirements.

Requirements of a Task Planner for Fully-Automated Support Functions
A task planner for fully-automated support functions in a surgery cell must meet two kinds of requirements: (1) those
related to the plan generation process (how it is generated, how fast it is generated, etc.) and (2) those related to the
kind of plan generated (does it have concurrent actions, is it optimized etc.). This analysis focuses on the first kind of
requirements.
1. Meaningful interaction with surgeon: Surgery is a complex procedure, and the surgeon often makes decisions

and takes actions depending on the situation [5]. For example, the location of incision for inserting the tools in
the body cavity may depend on the patient’s weight and body shape [3]. The surgeon may want the incision to
be in a different location than that specified in rule 3 in Table 2 after observing the patient or may want to add a
new rule based on his experience. Thus, a planner must be able to accept new knowledge and guidance from the
surgeon to make plans.

2. Execution monitoring and continuous plan modification: Safety is one of the most important considerations
in a surgery cell [5]. To ensure safety, the actions of the subsystems must be monitored by sensing the
environment and checking the actual state against the expected state [3]. If the actual state of the environment is
different from the state expected according to the plan, the task may have to be paused or cancelled or modified.
Thus, a planner must be able to monitor execution and modify plans continuously [8, 10].

3. Anticipatory planning: In a non-robotic surgery cell, the human nurse is able to anticipate the next step of
surgery and obtain a tool even before the surgeon asks for it, resulting in speeding up of the surgery process [3].
An ideal planner must do the same and generate plans for tasks even before the surgeon’s requests.

4. Meet time constraints: Various contingencies like excessive bleeding, irregular heartbeat of the patient etc.
might arise during surgery and it is possible that a plan might not exist for handling all such situations. Hence, in
addition to the plans that have been generated offline and stored, new plans may have to be generated on-site.

The time taken for on-site plan generation must be of the order of a few seconds [3]. Slow plan generation may
result in loss of concentration and frustration in the surgeon [3] and serious consequences for the patient.

Evaluation of classical planning techniques against the requirements
In this section, we evaluate the two classical planning techniques against the requirements. To see if the techniques
meet the time requirements, we will look at one representative algorithm from each technique.

Evaluation of PA planning techniques against the requirements
Meaningful interaction with Surgeon
The surgeon can interact with a PA planner in only one way, that is, by specifying new tasks in the form of initial
state and goal state.

However, much of the knowledge of the surgeon is in terms of various rules or heuristics [1, 2, 3] such as
those shown in Table 2. The domain model for primitive action planners does not contain any knowledge of this kind
and so cannot benefit from the surgeon’s input.

Thus, PA planners cannot interact with the surgeon in a meaningful way because they contain only
primitive actions and do not allow knowledge in the form of rules and criteria.
Execution monitoring and continuous plan modification
PA planning techniques assume that the world is deterministic. Therefore, these algorithms first generate a plan and
then the supervisor blindly executes it assuming all goes well [6, 8]. In reality, the surgery cell domain (like most
other domains with mechanical systems) is not completely deterministic because of inaccuracy in mechanical
devices and unexpected events like jamming and malfunctioning of devices.
 For example, in the compound action “Place new tool in surgical robot’s end-effector” in Table 2, the nurse
robot is expected to lock the tool in the surgical robot’s end-effector in a particular orientation. It is possible that due
to slight orientation or positioning errors of the robot’s end-effectors and/or arms the tool may break or may be
inserted in a slightly different orientation than what is expected by the plan. An ideal planner should be able to get
this information from the environment and modify the plan to take this into account.
 Execution monitoring and continuous plan modification is not supported by PA planners because they
assume a deterministic world and fully automated surgery cell is not a deterministic world.
Anticipatory planning
A human nurse learns from experience and is able to anticipate the surgeon’s demands. For example, when the
surgeon is performing incisions in the patient’s body the nurse observes him carefully and gets ready with the
scalpel. As soon as the surgeon puts down the scissors, the nurse is ready to hand over the scalpel to the surgeon [3].
 Thus, observation and learning are two key features needed for anticipatory planning. We saw in the
previous analysis that PA planners do not monitor or observe the environment.

Thus, anticipatory planning cannot be done by PA planners because they do not observe and learn.
Meet time requirements
We look at the time requirements for a representative PA algorithm. First we define two terms:
Branching factor: Only some actions can be applied to transform a state into some other state. a
For example, we cannot apply an action “Nurse, release scissors from gripper” when the gripper is empty. The
average number of actions applicable per state, b, is called branching factor [6].
Minimum number of steps in the solution: There may be more than one path from the initial state to the goal state.
The number of steps in the shortest path [6] is called d.
A simplistic algorithm for finding a solution works like
this (Fig 4): Apply all applicable actions to the initial
state resulting in b states. Then, apply all possible actions
to each of the resulting states. This would give us b x b
states at the next level. This process is continued till the
goal state is reached [6].
 Figure 4: A simplistic planning tree for b = 3 and d = 2
GRAPHPLAN: This algorithm works in a clever way so that it produces only one state at each level (Fig. 5). The
state at level 0 is represented by all the conditions that are true in the initial state. The state at level 1 is obtained by
including the initial state and effect of all actions that are applicable in state at level 0 [11, 12]. Thus, the application
of b actions does not result in b states but only one state at the next level. This is shown in Figure 5. This state may

Level 2

Goal
State

Level 0

Level 1

Initial StateAction1

3

have inconsistent conditions because two applicable actions may have effects that are negative of each other. The
algorithm keeps track of this by storing additional data about inconsistent conditions [11, 12].

Figure 5: GRAPHPLAN produces only one state after applying actions

GRAPHPLAN was shown [11] to have a time complexity that is a low order polynomial in the number of actions at
a given level. In a simple analysis [6] we can represent this as ()qpO where p is the maximum number of actions at
any level and q is a small number. q is the maximum number of conditions that are needed to describe a particular
aspect of the state (for example, “Nurse Robot is at point A” has only one condition; “Tool Rack has scissors AND
scissors are sterile” has 2 conditions).

Let us now get a rough estimate of the time
taken by the algorithm (the exact analysis is beyond the
scope of this paper, and can be found in [11]). Assuming
q = 4 and the number of action nodes that can be
generated [6] per second = 610 , a rough estimate of the
time taken by the algorithm is shown in Table 3.
p Maximum number of

actions at any level
Estimated
time taken

10 410 0.01 sec

50 450 6.25 sec
100 4100 100 sec

Table 3: Rough estimate of time taken by
GRAPHPLAN for q = 4

Now, the value of p depends on the average number applicable actions, which in turn depends on (1) the
number of subsystems in the cell and (2) the number of actions per subsystem. The number of subsystems in the
representative surgery cell is 4. The number of actions per subsystem is limited because each subsystem is expected
to perform a certain well-defined finite set of functions. Thus, p may have a reasonable value (about 50) if the
number of subsystems is small and each subsystem performs a small number of actions (about 100).
To summarize, GRAPHPLAN has polynomial time complexity and it may satisfy the time requirements if the
problem size p is not very large.

Evaluation of KB techniques against the requirements
Meaningful interaction with Surgeon
The surgeon can interact with a KB planner in three ways:
1. New input: Like PA planners, the surgeon can ask the KB planner to make new plans by specifying a new

initial state and final state.
2. Augmenting the domain model: The surgeon can easily understand and augment the domain model of KB

planners since it is in the form of criteria and rules. For example, in Table 2 the surgeon could add a new rule:
“The distance between the nurse robot and the patient should be greater than 10 cm while orienting and locking
a tool in the surgical robot’s end-effector”. This ensures that the nurse robot never accidentally hurts the patient
during the compound action “Place new tool in surgical robot’s end-effector”.

3. Advising the planner during plan generation phase: The surgeon can provide “advice” in selecting the
decomposition sequence for a particular action [13]. For example, in Table 4, the surgeon could advise the
planner to choose Sequence 2 for the compound action “Insert tool in surgical robot’s end-effector” if the
surgeon wants to speed up execution of this action.

Thus, KB planners are able to interact with the surgeon in a meaningful manner because they use a domain model in
the form of criteria and rules that a human user can easily understand, augment and modify.
Execution monitoring and continuous plan modification

Tool Rack:
Present scissors

Nurse Robot:
Move to Point B

Level 0
(Initial State)

Nurse gripper is empty
Tool Rack has scissors

Nurse gripper is empty
Nurse Robot is at point B

Tool Rack has scissors
Tool Rack does not have scissors

Applicable action

Extra information
about inconsistent
conditions

Effect of actions

Conditions
from initial
state

Level 1
(A single
resulting state)

A similar argument as the one provided for PA planners holds for KB planners because KB planners also assume a
deterministic world.
Anticipatory planning
A similar argument as the one provided for PA planners holds for KB planners because KB planners also do not
observe the world and learn from it.
Meet time requirements
We look at the time and space requirements for a representative KB algorithm.
HTN (Hierarchical Task Network) planning: This algorithm [6, 14] starts with an initial, high-level task
specification. It then finds a suitable decomposition sequence for this task. The decomposition results in a plan with
primitive and/or compound actions. Each compound action in the resulting plan is then decomposed. This process is
continued till the plan consists only of primitive actions [14] as shown in Figure 6.

At every step, the algorithm needs to (1) Either find a decomposition sequence for each action or (2) Make
such a sequence for that action if it does not exist. The problem is thus divided into a number of smaller problems
each of which can be solved in much lesser time than the original problem and then combined.
To see this, assume that the input problem consists of a single high level goal.
Number of primitive actions (that is, the number of steps) in the final plan = d.
Number of actions at the next level into which each compound action decomposes = k
Now, start from the high level goal at level 0 and pick one decomposition sequence (say sequence 1 in Figure 6)
resulting in k actions at the next level. For each of these k actions, pick
one decomposition sequence and continue till a sequence of only primitive actions is obtained. A
single tree is formed in the process as shown in Figure 6.
If the number of levels below level 0 is
h, we have,

dhdk k
h log=⇒= .

Number of actions per tree
= hkkk ++++ ..1 2
= (1−hk)/(1−k)= (1−d)/(1−k)
We can select any of the b possible
sequences for each action. Hence,
Total number of trees possible,
n =)1()1(−− kdb
Thus, the algorithm needs to construct n
trees to find a solution.

Figure 6: HTN planning tree with k = 3 and b = 2

Choosing d = 10 and k = 5, we get the number of actions
per tree to be 2.25. Assuming that 610 action nodes can
be generated per second [6], a rough estimate of the time
taken by the algorithm for various values of b is shown
in Table 4.

b No. of trees
constructed

Total no. of
actions

Estimated
time taken

10 177 400 0.0004 sec
50 6650 15000 0.015 sec
100 31650 72000 0.07 sec

Table 4: Rough estimate of time taken by HTN planning
for d =10 and k = Z

Sequence 2
Sequence 1

Level 0
Initial task (compound action)

Level 1
The compound action in
Level 0 has b = 2 sequences
to choose from. Each of the b
sequences has k = 3 actions

Final plan consists
of d primitive
actions

Level 2

1

k

2k

hk

The time complexity of HTN algorithm is orders of magnitude smaller than GRAPHPLAN because it makes use of
hierarchical action decompositions. From Table 4, we see that HTN algorithm meets the time constraints of the
surgery cell.

Conclusions
The conclusions drawn in section 4 are summarized in Table 5.

Criterion Primitive Action Planning KB Planning
Meaningful interaction with Surgeon No Yes
Execution monitoring and continuous
plan modification

No

No

Anticipatory Planning No No
Planning to meet time constraints GRAHPLAN May if problem size is

small
HTN Planning Yes

Table 5: Summary of the evaluation of planning algorithms against the requirements

The currently existing classical planning techniques do not meet the requirements of a planner for fully automated
support functions in a tele-operated surgery cell. PA planning methods cannot interact with the surgeon in a
meaningful way because the domain model used by them does not contain criteria and rules. KB planning methods
use a domain model that contains rules and criteria which a human can understand and augment. Hence, KB planers
are able to interact with the surgeon in a meaningful way. Both PA and KB planning methods do not meet two of the
important requirements, namely (1) Execution monitoring and continuous plan modification, and (2) Anticipatory
planning, because they assume a deterministic world and do not observe and learn from the world.
 In general, all classical planning techniques are unsuitable for fully automated task planning in surgery cells
because these techniques assume a deterministic world and fully automated surgery cell is not a deterministic world.

References
 [1] Bove, P., Stoianovici, D., Micali, S., Patriciu, A., Grassi, N., Jarrett, T.W., Vespasiani, G., and Kavoussi, L.R.,
2003, “Is Telesurgery a New Reality? Our Experience with Laparoscopic and Percutaneous Procedures,” Journal of
Endourology, 17(3), pp. 137-142.
[2] Meadows, M., May-June 2002, “Robots Lend a Helping Hand to Surgeons,” U.S. Food and Drug
Administration: FDA Consumer magazine, Retrieved October 30, 2005, from
http://www.fda.gov/fdac/features/2002/302_bots.html
[3] Miyawaki, F., Masamune, K., Suzuki, S., Yoshimitsu, K., and Vain, J., 2005, “Scrub Nurse Robot System-
Intraoperative Motion Analysis of a Scrub Nurse and Timed-Automata-Based Model for Surgery,” IEEE
Transactions on Industrial Electronics, 52(5), pp. 1227-1235.
[4] LeGoullon, A.P., and Tesar, D., 1997, “Configuration Management of Robotic Workcells,” M.S. Thesis, The
University of Texas at Austin, Austin, TX.
[5] Taylor, R.H., 2003, “Medical Robotics in Computer-Integrated Surgery,” IEEE Transactions on Robotics and
Automation, 19(5), pp. 765-781.
 [6] Russell, S., and Norvig, P., 2003, Artificial Intelligence: A Modern Approach, Prentice Hall, New Jersey, pp.
375-461.
[7] Georgeff, M. P., 1987, "Planning," Annual Review of Computer Science, Annual Reviews Inc., Palo Alto, CA, 2,
pp. 69-74, 359-400.
[8] Wilkins, D.E., and desJardins, M., 2001, “A Call for Knowledge-based Planning,” AI Magazine, 22, pp. 99-115.
[9] Tisius, M. S., and Tesar, D., 2004, “An Empirical Approach to Performance Criteria and Redundancy
Resolution”, M.S. Thesis, The University of Texas at Austin, Austin, TX.
[10] Chien, S., Hill, R., Wang, X., Estlin, T., Fayyad, K., and Mortenson, H., 1996, “Why Real-World Planning is
Difficult: A Tale of Two Applications,” New Directions in AI Planning, IOS Press, Washington, D.C., pp. 287-298.
 [11] Blum, A.L., and Furst ,M.L., 1997, “Fast Planning through Planning Graph Analysis,” Artificial Intelligence,
90, pp. 281–300.
[12] Weld, D.S., 1999, "Recent Advances in AI Planning," AI Magazine, 20(2), pp. 93-123.

[13] Myers, K. L.,1996, “Strategic Advice for Hierarchical Planners”, Proc. of 5th International Conference of
Principles of Knowledge Representation and Reasoning, Aiello, L. C. et al., eds., Morgan Kaufmann Publishers Inc.,
San Francisco, CA, pp. 112–123.
[14] Erol, K., Hendler, J., and Nau, D., 1994, “UMCP: A Sound and Complete Procedure for Hierarchical Task-
Network Planning,” Proc. 2nd International Conference on AI Planning Systems, Hammond, K., ed., AAAI Press,
Menlo Park, CA, pp. 249-254.

Appendix G: Real Time Robot Capability Analysis

Proceedings of IDETC/CIE 2005
ASME 2005 International Design Engineering Technical Conferences and

Computers and Information in Engineering Conference
September 24 – 28, 2005, Long Beach, California, USA

DETC2005-84353

REAL-TIME ROBOT CAPABILITY ANALYSIS

Chalongrath Pholsiri
Postdoctoral Fellow

Robotics Research Group
Department of Mechanical Engineering

The University of Texas at Austin
longrath@mail.utexas.edu

Chetan Kapoor
Chief Scientist

Robotics Research Group
Department of Mechanical Engineering

The University of Texas at Austin
chetan@mail.utexas.edu

 Delbert Tesar

Professor, Director
Robotics Research Group

Department of Mechanical Engineering
The University of Texas at Austin

tesar@mail.utexas.edu

ABSTRACT
Robot Capability Analysis (RCA) is a process in which

force/motion capabilities of a manipulator are evaluated. It is
very useful in both the design and operational phases of
robotics. Traditionally, ellipsoids and polytopes are used to both
graphically and numerically represent these capabilities.
Ellipsoids are computationally efficient but tend to
underestimate while polytopes are accurate but computationally
intensive. This article proposes a new approach to RCA called
the Vector Expansion (VE) method. The VE method offers
accurate estimates of robot capabilities in real time and therefore
is very suitable in applications like task-based decision making
or online path planning. In addition, this method can provide
information about the joint that is limiting a robot capability at a
given time, thus giving an insight as to how to improve the
performance of the robot. This method is then used to estimate
capabilities of 4-DOF planar robots and the results discussed
and compared with the conventional ellipsoid method. The
proposed method is also successfully applied to the 7-DOF
Mitsubishi PA10-7C robot.

1. INTRODUCTION

Evaluation of force/motion capabilities of a manipulator is
very important in all phases of robotics. In the design phase, it
can be used to determine the structure and size of a
manipulator, including the specifications of the main
components such as actuators. Before a robotic operation,

RCA can for example be used to plan a trajectory that can be
executed by a robot without violating its joint speed or torque
constraints. Note that, in these two cases, the evaluation of
robot capabilities need not be in real time.

RCA is also useful during a robotic task execution. For a
robotic task to be performed successfully, we must satisfy all
the task requirements, which are defined in terms of desired
speed, force, and accuracy at the end-effector (EEF). RCA can
then be used to estimate the robot’s achievable speed, force,
and accuracy and compare them to the desired values. If the
robot in operation is kinematically redundant, the null space
motion can be exploited to place the robot in a configuration
that satisfies the task requirements [11]. For non-redundant
robots, one can continuously monitor robot capabilities to
determine whether or not the robot would be able to
successfully execute the task at hand. If the robot seems unable
to, then it could alert an external path planner to generate a new
trajectory with less stringent task requirements. For RCA to be
applicable during task execution, it must be performed in real
time. This is the kind of application that the proposed RCA
technique in this article is aimed at.

This paper discusses how to accurately and quickly
estimate robot capabilities from the robot properties, joint
capacities, and robot configuration using a novel method called
Vector Expansion (VE). Like polytopes, joint capability
(torque, speed, etc.) limits are represented and used in their

 1 Copyright © 2005 by ASME

simplest form – a hypercube – thus giving more accurate
estimates than the ellipsoid method, which uses a hypersphere.
Since VE is intended for computing robot capabilities only in a
direction of interest in the task space, it can be made to
compute much faster than polytopes, which are meant to
represent robot capabilities in all directions. The VE method is
based on the ellipsoid expansion method proposed by Bowling
and Khatib [1].

2. ISSUES ON ROBOT CAPABILITY ESTIMATIONS
This section discusses two primary issues that arise when

attempting to develop the formulations for estimating robot
capabilities.

2.1 Homogeneity of the Jacobian Matrix
One important aspect that has to be pointed out here is that

the measures whose values depend upon the manipulator
Jacobian J, JJT, or the pseudoinverse of J suffer from possible
inconsistency deriving from improper use of vector norm and
from dependency on change of scale and coordinate frame [5].
Chiacchio and Concilio [3] avoided this problem when
formulating a dynamic manipulability ellipsoid by assuming that
all the joints are of the same kind (prismatic or revolute) and
that the task space is composed by either linear or angular
motion. Yoshikawa [14] decomposed the task space and the
Jacobian matrix into the translation and rotation parts and
proposed the translational and rotational manipulability
measures. Combining this Jacobian decomposition with
normalizing the input vector gives us homogeneous Jacobian
matrices (i.e. Jacobian matrices whose elements are of the same
units). Consider the following example. Suppose that the robot
has two joints with the first joint being revolute and the second
prismatic. Furthermore, the task space has two outputs; the first
is translation and the other rotation. The relationship between
the task space velocity and the joint space velocity is:

 x Jθ= . (1)
where x is an m-dimensional EEF velocity vector, J the m n×
Jacobian matrix, and θ the n-dimensional joint velocity vector.
The dimension analysis of Eq. (1) yields1

 . (2) / 1 1
1/ 1 1/ /

length time length time
time length length time

⎡ ⎤ ⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥ ⎢

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

/ ⎤
⎥

Obviously, the Jacobian contains mixed units. Now, let’s
decompose the Jacobian into the translation and rotation parts
such that Eq. (1) becomes

 T T

R R

x J

x J

θ

θ

=

=
. (3)

where Tx and Rx are, respectively, the mT-dimension
translational velocity and the mR-dimension rotational velocity
of the end-effector; JT and JR are the translational and rotational
Jacobian matrices, respectively. Now the dimension analysis
yields

⎤
⎥
⎦

1 Note that prismatic joints do not contribute to rotational motion and thus
the corresponding Jacobian elements should be zero. However, for consistency
in the dimension analysis, their dimensions are shown here.

 . (4) []

[]

1/
/ 1

/

1/
1/ 1 1/

/

time
length time length

length time

time
time length

length time

⎡
= ⎢

⎣
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

These decomposed Jacobian matrices (JT and JR) still contain
mixed units. The next step is to normalize the input vector (joint
velocities) by their speed limits. Let’s define the normalized
joint velocity vector as

 1Lθθ θ−= , (5)

where { }max max max
1 2, , , nL diagθ θ θ θ= … is an n n× diagonal matrix

consisting of the joint speed limits. Note that the normalized
input vector θ is dimensionless. This normalization process is
not only necessary for a mixed-joint robot but also useful for a
same-joint (either revolute or prismatic) robot with each joint
possessing different capability limit. It is assumed here that the
joint speed upper and lower limits are of equal magnitude but
in the opposite direction. Substituting θ from Eq. (5) into Eq.
(3) yields

 T T T

R R R

x J L J

x J L J

θ

θ

θ θ

θ θ

=

=

1

1

⎡ ⎤
⎢ ⎥

⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (6)

The new dimension analysis yields

 . (7)
[]

[]

[]

[]

1/ 0 1
/ 1

0 /

1
/ /

1

1/ 0 1
1/ 1 1/

0 /

1
1/ 1/

1

time
length time length

length time

length time length time

time
time length

length time

time time

⎡ ⎤
= ⎢ ⎥

⎣
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

The new Jacobian matrices (
TJ and

RJ) now have consistent
units and therefore any measures derived from these matrices do
not suffer the same potential inconsistency as those derived
directly from the manipulator Jacobian J.

2.2 Ellipsoids and Polytopes
The concept of ellipsoids is perhaps the most popular tool

used to analyze the robot’s manipulability and kinetostatic
capability due to its simplicity and ease of interpretation. In the
ellipsoid concept, the set of realizable EEF velocities from the
set of joint velocities whose Euclidean norm is less than or
equal to one can be obtained by transforming the space

{ }2
:eQ θ θ 1= ≤ via Eq. (1). Note that this transformation

changes the Euclidean norm which is a unit hypersphere in the
joint space to an ellipsoid in the task space. Figure 1 illustrates
the ellipsoid concept for a 2-DOF planar manipulator with the
task space of dimension 2. σmin and σmax are, respectively, the
minimum and maximum singular values of the Jacobian, which
correspond to the directions of minimum and maximum task
space velocities, respectively.

 2 Copyright © 2005 by ASME

Figure 1: A 2-DOF example of ellipsoid transformation.

The ellipsoid transformation can be used to estimate the
robot EEF capabilities given the joint (or actuator) capabilities
as will be shown shortly. However, it is noteworthy that an
ellipsoid only approximates a more accurate polytope. A
polytope is the result of transformation from a hypercube via a
linear transformation in the same way an ellipsoid is from a
hypersphere. Since actuators have maximum or minimum
performance values (speed limits, torque limits, etc.), a more
accurate representation of their capabilities is by the ∞-norm (or
a hypercube) not the Euclidean norm (or a hypersphere).
Ellipsoids can be considered conservative approximations of
polytopes because they always yield smaller EEF capabilities.
Figure 2 compares the ellipsoid and the polytope of a 2-DOF
planar robot. In addition, Lee [10] also showed that the
directions of minimum and maximum velocity transmission
ratios obtained via the ellipsoid method may not be the same as
those obtained from the polytope method.

Figure 2: A 2-DOF example of ellipsoid and polytope.

Although polytopes are a more accurate representation than
ellipsoids, they are also complex and considerably more
expensive to compute, especially for redundant manipulators.
Using a new recursive dimension-growing algorithm, Hwang et
al. [8] showed that the computation time of a velocity polytope
of a 10-DOF robot on to a 3D task space was improved from
427.52 seconds using a conventional method to 6.64 seconds on
an HP 700 system. Even with the remarkable improvement in
computation speed, it is still far from being acceptable for real-
time applications. Many researchers including Chiacchio et al.
[2], Lee [10], and Finotello et al. [6] have applied the concept of
polytopes to analyzing kinetostatic capabilities of manipulators.

In their investigation of the acceleration characteristics of
non-redundant manipulators, Bowling and Khatib [1] used the
ellipsoid expansion approach. In this approach, “the linear and
angular accelerations are considered as two separate entities.”

This decomposition of the task space was discussed in detail in
the previous section. A unique trait of this approach, however, is
that quantities of interest are mapped from the task space to the
joint space whereas other studies do the opposite.

J

2θ

σmax

σmin

1

1

1θ x

y

Figure 3 illustrates how the ellipsoid expansion method
works. The purpose here is to find the largest possible
magnitude of acceleration in all directions that the manipulator
can provide. This isotropic acceleration is represented by a
hypersphere with radius a as shown in the right hand side of
Figure 3. This hypersphere is then mapped from the task space
to the joint space as an ellipsoid as shown in the left hand side of
Figure 3. The isotropic acceleration magnitude a is determined
by expanding/contracting the ellipsoid until it lies within and is
tangent to one or more of the torque bounds.

Figure 3: Ellipsoid expansion (Adapted from [1]).

1

a ak

k

1v

2v

1τ

2τ

 With this reverse mapping, the computationally expensive
process of creating polytopes in the task space is eliminated.
Yet, bounds on joint capabilities are represented and used in its
simplest and exact form as a hypercube. Thus, the ellipsoid
expansion method has a benefit of being more accurate than the
ellipsoid model without the computational overhead of the
polytope. Moreover, an important piece of information obtained
via this method that is not possible in the ellipsoid method is the
limiting joint, i.e. the joint whose capability limits the EEF
capability. In Figure 3 above, Joint 2 is the limiting joint
because the expanded ellipsoid touches the torque bound of
Joint 2. The limiting joint information is extremely valuable in
the design phase of the robot. However, this approach does not
directly provide the visualization of the robot capabilities in the
task space that ellipsoids or polytopes can. Perhaps more
importantly, it fails to impart the general characteristics of the
robot capabilities in the task space such as the directions of
maximum or minimum transmission ratios, etc. Nonetheless, for
our purpose of estimating the robot capabilities in a given
direction, the ellipsoid expansion approach may be more
appropriate than either the ellipsoid or the polytope method.

2θ

1

1

1θ

J

x

ellipsoid

polytope

y

In the development of the estimation of robot capabilities,
the normalized decomposed Jacobian matrices will be used
whenever appropriate to promote the consistency of the results.
In addition, polytopes will not be utilized due to their
unacceptable computation time as pointed out earlier. We will
opt instead for the ellipsoid model and the vector expansion
method, which is adapted from the ellipsoid expansion method
proposed by Bowling and Khatib [1]. As its name implies, this
method expands or contracts a vector, instead of an ellipsoid, to
determine the robot capabilities. Like the ellipsoid expansion
method, the vector expansion method has a benefit of being
more accurate than the ellipsoid model without the

 3 Copyright © 2005 by ASME

computational overhead of the polytope. Also, the limiting joint
information is still available as it is in the ellipsoid expansion
method. The main difference between the vector and ellipsoid
expansion methods is that the latter uses isotropic properties,
which aim at determining robot capabilities in all directions.
This is appropriate when we wish to analyze the overall robot
capability, for example, in the design stage of the robot.
However, during robot operations in which the requirements in
some directions are more demanding than those in others,
isotropic characteristics may not be desirable.

3. ROBOT CAPABILITY ESTIMATIONS

3.1 Achievable EEF Velocity
Based upon the joint speed limits, this section presents two

methods that can be used to estimate the EEF speed in the task
space from a purely kinematic point of view.

Ellipsoid Formulation
This section formulates the EEF achievable speed estimation

using the ellipsoid concept. Based upon the decomposed
Jacobian matrices in Eq. (3), Yoshikawa [14] defined the
Translational Velocity Ellipsoid (TVE)2 in the weak sense as
“the set of all translational velocities that are realizable under the
constraint

2
1θ ≤ .” The TVE in the strong sense adds another

constraint that the EEF orientation is kept constant (0Rx =).
The Rotational Velocity Ellipsoids (RVEs) in the weak and
strong senses are defined similarly. However, as we have shown
previously, the decomposed Jacobian matrices in Eq. (3) are still
not homogeneous. It is better to use the normalized
decomposed Jacobian matrices in Eq. (6).

Because the analyses are identical, we will only develop
the formulations on the translational EEF velocity and will
deduce the results for the rotational EEF velocity. The
translation part of Eq. (6) is repeated here for convenience.

T T Tx J L Jθθ θ= (8)

Using the pseudoinverse, we obtain
 †

T TJ xθ = . (9)
Then,

 ()† †

2

TT T
T T T Tx J J xθ θ θ= = . (10)

Therefore, the TVE in the weak sense is described by

 () (){ }† †: 1 and
TT

T T T T T T Tx x J J x x R J≤ ∈ (11)

where denotes the range of ()TR J TJ . If the manipulator is

not in a singular configuration, then the condition ()T Tx R J∈

is not necessary. Rearranging a few terms and Eq. (11) can be
rewritten as

 () (){ }12: 1 and T T
T T T T T T Tx x J L J x x R Jθ

−
≤ ∈ . (12)

2 In Yoshikawa [1991], the term Translational Manipulability Ellipsoid

(TME) was used but we think the term Translational Velocity Ellipsoid is more
appropriate and thus will be used here.

Let ˆ
Tx vt= where is the unit vector in the direction of

interest in the task space. Then, the inequality in Eq. (12)
becomes

t̂

 . (13) () 12 2ˆ ˆ 1T T
T Tt J L J t vθ

−⎡ ⎤ ≤⎢ ⎥⎣ ⎦
Thus, the maximum achievable translational EEF speed in the

 direction can be estimated by t̂

()

max 12

1

ˆ ˆT T
T T

v
t J L J tθ

−
= ± . (14)

Similarly, the maximum achievable rotational EEF speed in the
 direction is t̂

()

max 12

1

ˆ ˆT T
R Rt J L J tθ

ω
−

= ± . (15)

Vector Expansion Formulation
This section discusses how to estimate the manipulator’s

speed capabilities using the vector expansion method. Note from
Eq. (8) that the bounds on θ can be written as

 θ− ≤ ≤1 1 (16)
where 1 is a vector of n-dimension with each element equal to
one. Combining Eqs. (9) and (16) gives

 †
T TJ x− ≤ ≤1 1 . (17)

Again, let ˆ
Tx vt= where is the unit vector in the direction

of interest in the task space. The maximum achievable speed is
conceptually determined by expanding/contracting the vector

 (changing v) until it touches one of the joint speed limits
as depicted in Figure 4.

t̂

† ˆ
TvJ t

Figure 4: Joint speed limits and velocity vector expansion.

1x

2x

1θ

2θ

1

1

ˆvt

† ˆ
TvJ t

In determining vmax (by expanding or contracting), we

can compare; the vectors

† ˆ
TvJ t

† ˆ
TJ t and 1 element by element. By

inspecting Eq. (17), the maximum achievable translational EEF
speed in the t direction can be expressed as ˆ

 max †

1min , 1, ,
ˆi

T i

v i
J t

= = … n (18)

 4 Copyright © 2005 by ASME

where † ˆ
T i

J t is the absolute value of the ith-component of the

vector † ˆ
TJ t . Similarly, the maximum achievable rotational EEF

speed in the direction is t̂

 max †

1min , 1, ,
ˆi

R i

i
J t

ω = = … n . (19)

3.2 Achievable EEF Acceleration
The previous section discussed the achievable EEF speed

from a purely kinematic point of view. The true achievable EEF
speed also depends on how much the robot can accelerate its
EEF. In this section, we wish to determine the achievable EEF
acceleration, which is a function of the robot’s joint torque
limits and its dynamic properties.

Ellipsoid Formulation
The formulations here are adapted from the work done on

dynamic manipulability by Chiacchio and Concilio [3]. The
second-order differential kinematics of a manipulator can be
written as

 x J Jθ θ= + (20)
The robot dynamics equation can be written as

 T
eM C g J Fθ θ θ θ θ θ+ + =() + (,) () τ (21)

where is a generalized joint torque vector,nτ ∈R n nM θ ×∈() R
a symmetric and positive definite joint inertia matrix,

 the Coriolis/centripetal torque, the
torque due to gravity, and the contact force exerted by
the EEF.

nC θ θ θ ∈(,) R ng θ ∈() R
m

eF ∈R

The robot’s acceleration capability is defined as the ability of
the robot to move its EEF from stationary () with no
external force acting on the EEF (Fe = 0). Applying these two
conditions, Eq.(20) becomes

0θ =

 x Jθ= , (22)
and Eq. (21) is reduced to

 M gθ θ θ =() + () τ . (23)
Define the normalized joint torque vector

 1Lττ τ−= (24)

where is a diagonal matrix
consisting of the joint torque limits. Combining Eqs. (22)-(24)
yields

{ }max max max
1 2, , , nL diagτ τ τ τ= … n n×

T T T gx B xτ= + (25)

where 1
T TB J M Lτ

−= and 1
gT Tx J M g−= − . Using the

pseudoinverse of BT in Eq. (25),
 ()†

T T gTB x xτ = − (26)

τ in Eq. (26) can be thought of as a set of joint torques
required to generate the translational (linear) acceleration Tx in
the task space. Therefore, it is technically more correct to
denote it as Tτ . Similarly, the joint torques required to

generate the rotational (angular) acceleration Rx can be
expressed as

 (†)R R R gRB x xτ = − (27)

where 1
R RB J M Lτ

−= and 1
gR Rx J M g−= − . The total

normalized torque is then the sum of the two T Rτ τ τ= + .
The unit sphere in the space of normalized joint torques

1Tτ τ ≤ can now be mapped to the task space to give the
translational acceleration ellipsoid as

 () ()1 † † 1 1
TT

T T T T T Tx J M g B B x J M g− −+ + ≤ . (28)

Defining , Eq. (28) can be rewritten as 2Q ML Mτ
−=

 () () ()11 1 1 1
T T

T T T T T Tx J M g J Q J x J M g
−− − −+ + ≤ . (29)

Let () 11 T
T T TN J Q J

−−≡ and ˆ
T Tx a t= where is the unit vector

in the direction of interest in the task space. Then Eq. (29) can
be rewritten as

t̂

 2 2T T Tf fα β γ 0+ + ≤ (30)
where

ˆ ˆ

ˆ

1

T
T T

T
T T gT

T
T gT T gT

t N t

t N x

x N x

α

β

γ

=

= −

= −

.

Solving Eq. (30) yields the estimation of the achievable
translational EEF acceleration given by

2 2

T T T T T T T T
T

T T

a
β β α γ β β α γ

α α
− − − − + −

≤ ≤ . (31)

The rotational EEF acceleration capability can be estimated
using Eqs. (29)-(31) with JT being replaced with JR.

Vector Expansion Method
The bounds on the normalized joint torques can be written as

 τ− ≤ ≤1 1 (32)
where 1 is a vector of n-dimension with each element equal to
one. Substituting τ from Eq. (26) in Eq. (32) yields

 ()†
T T gTB x x− ≤ −1 ≤ 1

τ

. (33)

Rearranging a few terms gives the governing equation as
 (34) †

lower T T upperB xτ ≤ ≤

where and . †
upper T gTB xτ = +1 †

lower T gTB xτ = − +1 upperτ and

lowerτ can be thought of, respectively, as vectors of upper and
lower limits of normalized joint torques shifted by the robot
links’ weights (gravity effects).
 Let ˆ

Tx at= where is the unit vector in the direction
of interest in the task space. Then, Eq. (34) can be rewritten as

t̂

 (35) † ˆ
lower T upperaB tτ ≤ ≤τ

The vector expansion model describing Eq. (35) is illustrated in
Figure 5.

 5 Copyright © 2005 by ASME

Figure 5: Joint torque bounds and acceleration vector
expansion.

Note here that, unlike the joint speed bounds, the torque
bounds in Figure 5 are not symmetrical due to the weight of the
robot. If the bounding box is shifted so far that it does not
contain the origin, it means the robot cannot support its own
weight. This should never happen in real operations.
Mathematically, this means that all elements of lowerτ have to
remain negative and upperτ positive. But this situation could arise
if we use this analysis as a tool in designing robots. By
expanding/contracting the vector , the magnitude of the
achievable translational acceleration is determined by

† ˆ
TaB t

 , ,
† †

min max , , 1, ,
ˆ ˆ

upper i lower i

i
T Ti i

a i
B t B t

τ τ⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟≤ =⎨ ⎬⎜ ⎟⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎝ ⎠⎩ ⎭
… n (36)

where ,lower iτ , ,upper iτ , and are the ith elements of

vectors

† ˆ
T i

B t⎡ ⎤⎣ ⎦

lowerτ , upperτ , and , respectively. For each joint i,

note that one of

† ˆ
TB t

,
† ˆ

upper i

T i
B t

τ
⎡ ⎤⎣ ⎦

 and ,
† ˆ

lower i

T i
B t

τ
⎡ ⎤⎣ ⎦

 will be positive and the

other negative. The max operation will choose the positive one
between them, which will present the maximum acceleration
allowed by joint i. Then, the min operator will choose the
maximum acceleration achievable by the whole robot.

Similarly, the rotational EEF acceleration capability can be
expressed as

 , ,
† †

min max , , 1, ,
ˆ ˆ

upper i lower i

i
R Ri i

i
B t B t

τ τ
α

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟≤ ⎨ ⎬⎜ ⎟⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎝ ⎠⎩ ⎭
… n= . (37)

3.3 Achievable EEF Static Force Capability
Many studies found in the literature omit the effect of

gravity when computing force capability (see [2], [6], and [9]
for example). As Hernandez and Tesar [7] pointed out that the
weight of the manipulator is usually the most dominant load,
especially for industrial robots, it is not wise to ignore the
gravity effect when estimating the robot force capability. The
impact of the gravity on the force capability will be
demonstrated shortly.

Ellipsoid Formulation
Considering the EEF force and gravity, the joint torques can

be expressed as

 TJ F gτ = + (38)

1Tx

2Tx

1τ

2τ

ˆat

† ˆ
TaB t

Decomposing the Jacobian and the EEF force yields

 TT T T T
T R T T R R

R

F
J J g J F J F g

F
τ

⎡ ⎤
⎡ ⎤= + = + +⎢ ⎥⎣ ⎦

⎣ ⎦
. (39)

Define the normalized joint torque vector
 1Lττ τ−= (40)

where { }max max max
1 2, , , nL diagτ τ τ τ= … is a n n× diagonal matrix

consisting of the joint torque limits. The force ellipsoid is then
described by

 () ()2 1
TT T T T T

T T R R T T R RJ F J F g L J F J F gττ τ −= + + + + ≤ . (41)

Consider the case where FR = 0 (i.e. the external moment is
neglected). Eq. (41) becomes

 () ()2 1
TT T T

T T T TJ F g L J F gττ τ −= + + ≤ , (42)

which describes the Translational Force Ellipsoid (TFE) in the
weak sense. Let ˆ

TF ft= where is the unit vector in the
direction of interest in the task space. Then Eq. (42) can be
rewritten as

t̂

 2 2T T Tf fα β γ 0+ + ≤ (43)
where

2

2

2

ˆ ˆ

ˆ

1

T T
T T

T T
T T

T
T

t J L J tT

g L J t

g L g

τ

τ

τ

α

β

γ

−

−

−

=

=

= −

.

Solving Eq. (43) yields the estimation of the achievable
translational EEF force capability given by

2 2

T T T T T T T

T T

f Tβ β α γ β β α γ
α α

− − − − + −
≤ ≤ . (44)

The rotational EEF force (moment) capability can be estimated
using Eqs. (42)-(44) with JT being replaced with JR.

Vector Expansion Formulation
The bounds on τ can be written as

 max maxτ τ τ− ≤ ≤ . (45)
Combining Eqs. (39)-(40) with (45) yields

 ()1 T T
T T R RL J F J F gτ

−− ≤ + +1 ≤ 1

τ

 (46)

where 1 is a vector of n-dimension with each element equal to
one. Rearranging a few terms gives the governing equation as

 (47) 1 1T T
lower T T R R upperL J F L J Fτ ττ − −≤ + ≤

where 1
upper L gττ −= −1 and . 1

lower L gττ −= − −1
Consider the case where FR = 0 (i.e. the external moment is

neglected) and let ˆ
TF ft= where t is the unit vector in the

direction of interest in the task space. Then, Eq. (47) can be
rewritten as

ˆ

 (48) 1 ˆT
lower T upperfL J tττ −≤ ≤ τ

The vector expansion model describing Eq. (48) is illustrated
in Figure 6.

 6 Copyright © 2005 by ASME

Figure 6: Joint torque bounds and force vector expansion.

Note here that, unlike the joint speed bounds, the torque
bounds in Figure 6 are not symmetrical due to the weight of the
robot itself. The largest magnitude of translational force that
still fits the transformed force vector in the torque bounds is
determined by

 , ,
1 1

min max , , 1, ,
ˆ ˆ

upper i lower i
T Ti
T Ti i

f i
L J t L J tτ τ

τ τ
− −

⎧ ⎛ ⎞⎪ ⎜ ⎟≤ ⎨ ⎜ ⎟⎡ ⎤ ⎡ ⎤⎪ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎩
… n

⎫⎪ =⎬
⎪⎭

 (49)

where ,lower iτ , ,upper iτ , and 1 ˆT
T i

L J tτ
−⎡⎣ ⎤⎦ are the ith elements of

vectors lowerτ , upperτ , and , respectively. 1 ˆT
TL J tτ

−

Similarly, the rotational EEF force (moment) capability can
be found using Eqs. (48) and (49) with JT being replace with JR
as

 , ,
1 1

min max , , 1, ,
ˆ ˆ

upper i lower i
T Ti
R Ri i

m i
L J t L J tτ τ

τ τ
− −

⎧ ⎛ ⎞⎪ ⎪⎜ ⎟≤ =⎨ ⎬⎜ ⎟⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⎝ ⎠⎩
… n

⎫

⎭

T

. (50)

Let’s reconsider Eq. (47) but without assuming that either
the force or moment is zero. Let ˆ

TF ft= and ˆ
R RF mt= then

Eq. (47) becomes
 . (51) 1 1ˆ ˆT T

lower T T R R upperfL J t mL J tτ ττ − −≤ + ≤τ

τ

This equation is illustrated graphically in Figure 7. Note that
there is no unique solution to Eq. (51). One can only find f
given m, or vice versa.

Figure 7: Translation and rotation vectors added.

The process of determining f given m (or vice versa) is
straightforward. For a given m, Eq. (51) can be rewritten as

 (52) 1 ˆT
lower T T upperfL J tττ −≤ ≤

where and .
Eq. (49) can then be used to determine f.

1 ˆT
lower lower R RmL J tττ τ −= − 1 ˆT

upper upper R RmL J tττ τ −= −

1TF

2TF

1τ

2τ

ˆf t⋅

1 ˆT
TfL J tτ

−
One intriguing application of the estimation of robot force

capability is in the area of fault tolerance and failure recovery.
Cocca and Tesar [4] proposed a Partial Failure Torque
Minimization criterion for dealing with joint partial failure.
Joint partial failure is referred to when one or more joints can no
longer supply the torques at their full capacities. The proposed
estimation of robot force capability is readily equipped to cope
with this circumstance. Once the system detects joint partial
failure and determines the reduced torque capabilities for the
failed joints, it can set these new values in the joint torque limit
matrix Lτ. The new force capability based on the reduced joint
torques can then be computed and used in the redundancy
resolution process or to create a sense of margin of failure.

3.4 Maximum EEF Position Error
If the joint errors θ∆ are assumed to be small, the EEF

error can then be estimated by
 x J θ∆ = ∆ . (53)

This is the same equation that governs the relationship between
the joint and EEF velocities. Thus, the process of estimating
the maximum EEF position error is identical to that of
estimating the achievable EEF speed.

Ellipsoid Formulation
Similar to the EEF speed, the translational EEF error Tx∆ is

constrained by
 () 12 1T T

T T T Tx J L J xθ

−

∆∆ ∆ ≤ . (54)

where { }max max max
1 2, , , nL diagθ θ θ θ∆ = ∆ ∆ ∆… is a n n× diagonal

matrix consisting of the maximum joint errors. Similar to the
achievable EEF speed in the previous section, the maximum
translational and rotational EEF position errors can then be
estimated as

()

()

max 12

max 12

1

ˆ ˆ

1

ˆ ˆ

T
T T

T T

R
T T

R R

x
t J L J t

x
t J L J t

θ

θ

−

∆

−

∆

∆ =

∆ =
. (55)

1TF

2TF
1τ

2τ

T̂f t⋅

1RF

2RF
R̂m t⋅

1 ˆT
T TfL J tτ

−

1 ˆT
R RmL J tτ

−
Vector Expansion Formulation

Using the results from Eqs. (18) and (19), the maximum
translational and rotational EEF position errors using the vector
expansion method can then be estimated as

max †

max †

1min , 1, ,
ˆ

1min , 1, ,
ˆ

T i
T i

R i
R i

x i n
J t

x i n
J t

∆ = =

∆ = =

…

…
 (56)

Although there are many more types of errors, in this work,

we assume that each maximum joint error can be estimated by

 7 Copyright © 2005 by ASME

combining the joint encoder resolution with the joint deflection
due to joint flexibility.

 []max
i i i

Cθ ε τ∆ = + (57)

where εi is the encoder resolution of joint i, C is the joint
compliance matrix, and τ is the joint torque vector. In the static
case, the joint torques can be obtained from the gravity torques
and the external EEF force. Naturally, others joint errors can
be easily added to this model.

4. APPLICATION
In this section, we apply the VE method to a 4-DOF planar

robot with link lengths of 0.3, 0.24, 0.1, and 0.08 m. The joint
speed limits are 50 deg/second for all joints and joint torque
bounds are 100, 45, 35, and 15 N-m. The links weigh 7.5, 5, 2,
and 1 kg with the centers of mass at 0.2, 0.15, 0.08, and 0.06 m
from the joints. For acceleration and force estimations, gravity
is assumed present at 9.8 m/s2 in the downward direction. The
manipulator configuration is at as
shown in the figure below.

[45 45 45 45 Tθ = − − −]

Figure 8: 4-DOF planar robot used in simulations.

Figure 9 shows the velocity ellipsoid (created by the
ellipsoid method) and the velocity polytope (created by the
vector expansion method) of the 4-DOF robot. The numbers
beside the edges of the polytope indicate the limiting joints at
those edges. Although the vector expansion method cannot
directly create a polytope, the polytope here was generated by
incrementing the angle of the unit vector by one degree at a
time and recording the resulting robot’s speed capability. The
ellipsoid was generated the same way even though we could
have easily used Eq. (13) to plot the ellipsoid. As expected, the
ellipsoid is smaller than the polytope. The ellipsoid gives a
fairly good estimation in the Y direction (0.5260 vs 0.5756 m/s)
whereas it underestimates the velocity in the X direction by
more than 30% (0.2026 vs 0.3222 m/s). The numbers beside the
edges of the polytope indicate the limiting joints at those edges.
Interestingly, Joint 4 is never the limiting joint in any direction
at this configuration.

t̂

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

velocity in x (m/s)

ve
lo

ci
ty

 in
 y

 (m
/s

)

3

21

3

2 1

 A

B

C

D

Figure 9: Velocity ellipsoid (solid) and polytope (dotted)

Figure 10 shows the acceleration ellipsoid and polytope of
the Planar4R robot. Not surprisingly, both the ellipsoid and
polytope are shifted downwards because of gravity (in fact, they
are also slightly shifted to the right). Again, ellipsoid does a
good job of approximating the acceleration capability in some
directions but not as good in others. The numbers beside the
edges of the polytope again denote the limiting joints. For this
particular case, only Joints 2 and 4 are limiting joints.

Y

X

-40

-30

-20

-10

0

10

20

30

-100 -50 0 50 100

acceleration in x (m/s^2)

ac
ce

le
ra

tio
n

in
 y

 (m
/s

^2
)

2

4

2

4

Figure 10: Acceleration ellipsoid (solid) and polytope

(dotted)

Force ellipsoid and polytope are shown in Figure 11. Like
the acceleration capability, gravity plays a significant role on the
ability of the robot to exert force. According to the ellipsoid
formulation, with gravity, the robot can exert the force
downwards almost 3.5 times as much as it can upwards in this
particular configuration. The effect of gravity on the polytope is
even greater. Not only does gravity shift the center of the
polytope downwards, it alters the shape of the polytope as well.
Again, gravity enhances the robot ability to exert the force in the
downward direction and reduces that in the upward direction.
However, the polytope only shows the ratio of around 2 instead
of 3.5 as indicated by the ellipsoid. The significant impact of

 8 Copyright © 2005 by ASME

gravity on the robot force capability is, without question,
illustrated by either model.

-300

-250

-200

-150

-100

-50

0

50

100

150

-250 -200 -150 -100 -50 0 50 100 150 200 250

force in x (N)

fo
rc

e
in

 y
 (N

)

4

2

1

4

2

1

Figure 11: Force ellipsoid (solid) and polytope (dotted)

The proposed method has also been successfully applied to a
commercial 7-DOF Mitsubishi PA10-7C robot. The result,
which is a movie file showing the force capability of the robot
when it moves around, can be found at [13]. The snapshot of the
movie is illustrated in Figure 12. Here, the size of the arrow at
the EEF is proportional to the amount of force the robot is able
to apply in the direction of the arrow. The red color signifies
which joint is currently the limiting joint (it is Joint 2 in this
picture). The VE method is able to calculate robot capabilities
and the limit joint information as the robot moves its EEF or
performs self-motion in real time.

Figure 12: Snapshot of force capability of PA10-7C robot.

In addition, the VE method has also been used in a real-time
task-based redundancy resolution scheme [11] [12] with great
success. Using the 7-DOF Mitsubishi robot shown in Figure 12,
the average computation speed of around 130 Hz was achieved
on a computer with AMD Athlon-M 2400+ processor with 512
MB of RAM running Windows XP. During each cycle, the
computation included several VE calculations, inverse

kinematics and other performance criteria. This proved that the
VE method is fast enough to be used in real-time task execution.

To prove the validity of the vector expansion method, we
compared the polytope generated by this method with the force
polytope algorithm proposed by Chiacchio et al. [2]. Note
however that, in the development of the force polytope
algorithm, two restrictive assumptions were made: all the joints
are of the same kind and the task space of interest is composed
by either forces or moments. Gravity was also omitted in their
formulation. In addition, it was not clear whether or not their
force polytope algorithm could provide the limiting joint
information. We applied the VE method to a 3-DOF planar
robot with the link lengths of 0.5, 0.3, and 0.2 m and with the
torque bounds of 3, 2, and 1 N-m3. The manipulator
configuration is . The force polytope
generated by the vector expansion method, shown in Figure 13,
matches the one presented in [2].

[60 60 60 Tθ = − −]

-6

-3

0

3

6

-8 -4 0 4 8

force in x (N)

fo
rc

e
in

 y
 (N

)
3

2
1

3

2 1

Figure 13: Force polytope for a 3-DOF planar robot.

5. CONCLUSION
The robot capabilities are functions of, among other factors,

the joint capabilities and the joint configuration. In this paper,
we presented a new approach to accurately estimating the robot
capabilities in the task space called the vector expansion
method. We developed formulations based on the vector
expansion method for each of the robot capabilities (speed,
accuracy, and force). We also gave numerical examples and
compared the results with the widely accepted ellipsoid method.

As has been shown, the vector expansion method yields
more accurate estimations than the ellipsoid method because it
uses the infinity norms of the bounds of the joint capabilities
instead of the Euclidean norm used in the ellipsoid method.
Using the reverse mapping, the vector expansion method does
not require the generation of the whole polytope and as a result
is computationally fast enough to be used in a real-time
redundancy resolution process [11] [12].

The robot capability analysis can be used as a tool in many
applications including real-time task-based decision making,

3 These are the same robot properties as those used in [2].

 9 Copyright © 2005 by ASME

online and offline path planning, and design and/or assembly of
robotic manipulators.

ACKNOWLEDGMENTS
This work was supported by funding from Department of

Energy (grant no. DE-FG04-94EW37966) and Texas Higher
Education Coordinating Board (grant no. ATP 003658-0034-
2001).

REFERENCES
[1] Bowling, A. and Khatib, O., 1995, “Analysis of the

Acceleration Characteristics of Non-Redundant
Manipulators,” Proc. of IEEE/RSJ IROS Conf., pp. 323-
328.

[2] Chiacchio, P., Bouffard-Vercelli, Y., and Pierrot, F., 1997,
“Force Polytope and Force Ellipsoid for Redundant
Manipulators,” Journal of Robotic Systems, v. 14, no. 8,
pp. 613-620.

[3] Chiacchio, P. and Concilio, M., 1998, “The Dynamic
Manipulability Ellipsoid for Redundant Manipulators,”
Proceedings of IEEE Int. Conf. on Robotics and
Automation, Leuven, Belgium, pp. 95-100.

[4] Cocca, C. Cox, D. Tesar, D., 1999, “Failure recovery in
redundant serial manipulators using nonlinear
programming,” Proceedings of the 1999 IEEE
International Conference on Robotics and Automation,
May 10-15, pp. 855 – 860.

[5] Doty, K.L., Melchiorri, C., Schwartz, E.M., and
Bonivento, C., 1995, “Robot Manipulability,” IEEE
Transactions on Robotics and Automation, v. 11, n. 3, pp.
462-468.

[6] Finotello, R., Grasso, T., Rossi, G., and Terribile, A.,
1998, “Computation of Kinetostatic Performances of
Robot Manipulators with Polytopes,” Proceedings of IEEE
Int. Conf. on Robotics and Automation, pp. 3241-3246.

[7] Hernandez, E. and Tesar, D., 1996, Compliance Modeling
for General Manipulator Structures, Ph.D. Dissertation,
University of Texas at Austin.

[8] Hwang, Y.-S., Lee, J., and Hsia, T.C., 2000, “A Recursive
Dimension-Growing Method for Computing Robotic
Manipulability Polytope,” Proceedings of IEEE Int. Conf.
on Robotics and Automation, pp. 2569-2574.

[9] Kim, H.S. and Choi, Y.J., 1999, “The Kinetostatic
Capability Analysis of Robotic Manipulators,”
Proceedings of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 1241-1246.

[10] Lee, J., 1997, “A Study on the Manipulability Measures
for Robot Manipulators,” Proceedings of IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, pp. 1458-1465.

[11] Pholsiri, C., Kapoor, C., and Tesar, D., 2004, “Manipulator
Task-Based Performance Optimization,” Proc. of ASME
Design Engineering Technical Conference, Salt Lake City,
UT.

[12] Pholsiri, C., Kapoor, C., and Tesar, D., 2004, Task-Based
Decision Making and Control of Robotic Manipulators,
Ph.D. Dissertation, University of Texas at Austin.

[13] RRG Simulation web site http://www.robotics.utexas.edu/
simulations/Subjects/Robotics/Mitsubishi 7DOF/index.htm

[14] Yoshikawa, T., 1991, “Translational and Rotational
Manipulability of Robotic Manipulators,” Proceedings of
Conference on Industrial Electronics, Control and
Instrumentation IECON, pp. 1170-1175.

 10 Copyright © 2005 by ASME

